Learn More
The current rapid growth in the use of nanosized particles is fueled in part by our increased understanding of their physical properties and ability to manipulate them, which is essential for achieving optimal functionality. Here we report detailed quantitative measurements of the mechanical response of nanosized protein shells (viral capsids) to(More)
Recent atomic force microscope (AFM) nanoindentation experiments measuring mechanical response of the protein shells of viruses have provided a quantitative description of their strength and elasticity. To better understand and interpret these measurements, and to elucidate the underlying mechanisms, this paper adopts a course-grained modeling approach(More)
Cellular membranes are a heterogeneous mix of lipids, proteins and small molecules. Special groupings enriched in saturated lipids and cholesterol form liquid-ordered domains, known as "lipid rafts," thought to serve as platforms for signaling, trafficking and material transport throughout the secretory pathway. Questions remain as to how the cell maintains(More)
As two-dimensional fluid shells, lipid bilayer membranes resist bending and stretching but are unable to sustain shear stresses. This property gives membranes the ability to adopt dramatic shape changes. In this paper, a finite element model is developed to study static equilibrium mechanics of membranes. In particular, a viscous regularization method is(More)
We describe a sequence of methods to produce a partial differential equation model of the electrical activation of the ventricles. In our framework, we incorporate the anatomy and cardiac microstructure obtained from magnetic resonance imaging and diffusion tensor imaging of a New Zealand White rabbit, the Purkinje structure and the Purkinje-muscle(More)
Circular domains in phase-separated lipid vesicles with symmetric leaflet composition commonly exhibit three stable morphologies: flat, dimpled, and budded. However, stable dimples (i.e., partially budded domains) present a puzzle since simple elastic theories of domain shape predict that only flat and spherical budded domains are mechanically stable in the(More)
PURPOSE Various methods exist for interpolating diffusion tensor fields, but none of them linearly interpolate tensor shape attributes. Linear interpolation is expected not to introduce spurious changes in tensor shape. METHODS Herein we define a new linear invariant (LI) tensor interpolation method that linearly interpolates components of tensor shape(More)
PACS 87.15.kt – Protein-membrane interactions PACS 87.16.D-– Membranes, bilayers, and vesicles PACS 34.20.-b – Interatomic and intermolecular potentials and forces, potential energy surfaces for collisions Abstract –Membrane proteins deform the surrounding lipid bilayer, which can lead to membrane-mediated interactions between neighboring proteins. Using(More)