Learn More
The class I histocompatibility antigen from human cell membranes has two structural motifs: the membrane-proximal end of the glycoprotein contains two domains with immunoglobulin-folds that are paired in a novel manner, and the region distal from the membrane is a platform of eight antiparallel beta-strands topped by alpha-helices. A large groove between(More)
Most of the polymorphic amino acids of the class I histocompatibility antigen, HLA-A2, are clustered on top of the molecule in a large groove identified as the recognition site for processed foreign antigens. Many residues critical for T-cell recognition of HLA are located in this site, in positions allowing them to serve as ligands to processed antigens.(More)
Three distinct categories of large-scale flexibility in proteins have been documented by single-crystal X-ray diffraction studies: the relatively free movement of essentially rigid globular domains that are connected by a flexible segment of polypeptide, the reorientation of essentially rigid domains among a few distinct conformations, and the concerted(More)
The A isozyme of yeast hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) crystallized as a complex with glucose has a conformation that is dramatically different from the conformation of the B isozyme crystallized in the absence of glucose. Comparison of the high-resolution structures shows that one lobe of the molecule is rotated by 12 degrees(More)
Preliminary electron density maps of the large and the small ribosomal particles from halophilic and thermophilic sources, phased by the isomorphous replacement method, have been constructed at intermediate resolution. These maps contain features comparable in size with what is expected for the corresponding particles, and their packing arrangements are in(More)
Crystals, diffracting best to around 3 A, have been grown from intact large and small ribosomal subunits. The bright synchrotron radiation necessary for the collection of the higher-resolution X-ray diffraction data introduces significant decay even at cryo temperatures. Nevertheless, owing to the reasonable isomorphism of the recently improved crystals of(More)
The binding of the substrate glucose to yeast hexokinase results in a substantial enzyme conformational change that is essential for catalysis and may be important for the enzyme's specificity, as well as the control of its activity. From high-resolution crystal structures of the monomeric enzyme crystallized both in the presence and in the absence of(More)