William S. A. Brusilow

Learn More
Type II hexokinase is overexpressed in most neoplastic cells, and it mainly localizes on the outer mitochondrial membrane. Hexokinase II dissociation from mitochondria triggers apoptosis. The prevailing model postulates that hexokinase II release from its mitochondrial interactor, the voltage-dependent anion channel, prompts outer mitochondrial membrane(More)
The function of the epsilon subunit of the Escherichia coli proton-translocating ATPase has been examined by using a mutant defective in the uncC gene. Strains with a defective uncC gene show a reduction in both growth yield and growth rate that is more severe than for other unc mutants; this deleterious effect is shown to be a result of the ATPase activity(More)
We studied human cancer cell models in which we detected constitutive activation of ERK. A fraction of active ERK was found to be located in mitochondria in RWPE-2 cells, obtained by v-Ki-Ras transformation of the epithelial prostate RWPE-1 cell line; in metastatic prostate cancer DU145 cells; and in osteosarcoma SAOS-2 cells. All these tumor cells(More)
In an effort to alter the levels of neurochemicals involved in excitotoxicity, we treated mice with methionine sulfoximine (MSO), an inhibitor of glutamine synthetase. Since glutamate toxicity has been proposed as a mechanism for the degeneration of motor neurons in a variety of neurodegenerative diseases, we tested the effects of MSO on the transgenic(More)
The chromosomal replication origin (oriC) of Vibrio harveyi has been isolated on a plasmid and shown to function as an origin in Escherichia coli. The nucleotide sequence of the V. harveyi oriC was determined. From a comparison of this sequence with oriC sequences of five enteric bacteria, we derived a consensus sequence of bacterial origins that function(More)
The F1F0 proton-translocating ATPase/synthase is the primary generator of ATP in most organisms growing aerobically. Kinetic assays of ATP synthesis have been conducted using enzymes from mitochondria and chloroplasts. However, limited data on ATP synthesis by the model Escherichia coli enzyme are available, mostly because of the lack of an efficient and(More)
We have cloned and sequenced the genes for the subunits of the proton-translocating ATP synthase of Bacillus megaterium QM B1551. The arrangement of the genes is identical to the arrangement of the same genes (the unc operon) in Escherichia coli. The genes for the Fo subunits immediately precede the genes for the F1 subunits and are themselves preceded by(More)
One of the central energy-coupling reactions in living systems is the intraconversion of ATP with a transmembrane proton gradient, carried out by proton-translocating F- and V-type ATPases/synthases. These reversible enzymes can hydrolyze ATP and pump protons, or can use the energy of a transmembrane proton gradient to synthesize ATP from ADP and inorganic(More)
In-frame fusions to lacZ were constructed in two adjacent genes of the unc operon of Escherichia coli, uncA and uncG, which code for the alpha and gamma subunits of the proton-translocating ATPase. After each fusion was moved into the E. coli chromosome, measurement of beta-galactosidase activities from single-copy genes showed that uncA was expressed(More)
Specialized lambda transducing phage DNA containing the unc region of the Escherichia coli chromosome was used as template to direct an in vitro transcription/translation system. The results demonstrated synthesis of seven of the eight polypeptides of the proton translocating ATPase of this organism. The three polypeptides a, b, and c, constituting the F0(More)