William Robson Schwartz

Learn More
Appearance information is essential for applications such as tracking and people recognition. One of the main problems of using appearance-based discriminative models is the ambiguities among classes when the number of persons being considered increases. To reduce the amount of ambiguity, we propose the use of a rich set of feature descriptors based on(More)
Significant research has been devoted to detecting people in images and videos. In this paper we describe a human detection method that augments widely used edge-based features with texture and color information, providing us with a much richer descriptor set. This augmentation results in an extremely high-dimensional feature space (more than 170,000(More)
This work introduces a novel descriptor called Binary Robust Appearance and Normals Descriptor (BRAND), that efficiently combines appearance and geometric shape information from RGB-D images, and is largely invariant to rotation and scale transform. The proposed approach encodes point information as a binary string providing a descriptor that is suitable(More)
Personal identity verification based on biometrics has received increasing attention since it allows reliable authentication through intrinsic characteristics, such as face, voice, iris, fingerprint, and gait. Particularly, face recognition techniques have been used in a number of applications, such as security surveillance, access control, crime solving,(More)
Problems such as image classification, object detection and recognition rely on low-level feature descriptors to represent visual information. Several feature extraction methods have been proposed, including the Histograms of Oriented Gradients (HOG), which captures edge information by analyzing the distribution of intensity gradients and their directions.(More)
Recent advances on biometrics, information forensics, and security have improved the accuracy of biometric systems, mainly those based on facial information. However, an ever-growing challenge is the vulnerability of such systems to impostor attacks, in which users without access privileges try to authenticate themselves as valid users. In this work, we(More)
Although visible face recognition has been an active area of research for several decades, cross-modal face recognition has only been explored by the biometrics community relatively recently. Thermal-to-visible face recognition is one of the most difficult cross-modal face recognition challenges, because of the difference in phenomenology between the(More)
This work introduces a new representation for Motion Capture data (MoCap) that is invariant under rigid transformation and robust for classification and annotation of MoCap data. This representation relies on distance matrices that fully characterize the class of identical postures up to the body position or orientation. This high dimensional feature(More)
Spoofing identities using photographs is one of the most common techniques to attack 2-D face recognition systems. There seems to exist no comparative studies of different techniques using the same protocols and data. The motivation behind this competition is to compare the performance of different state-of-the-art algorithms on the same database using a(More)
The problem of face identification has received significant attention over the years. For a given probe face, the goal of face identification is to match this unknown face against a gallery of known people. Due to the availability of large amounts of data acquired in a variety of conditions, techniques that are both robust to uncontrolled acquisition(More)