William R. Provancher

Learn More
A variety of tasks could benefit from the availability of direction cues that do not rely on vision or sound. The application of tangential skin displacement at the fingertip has been found to be a reliable means of communicating direction and has potential to be rendered by a compact device. Our lab has conducted experiments exploring the use of this type(More)
— A new approach for climbing hard vertical surfaces has been developed that allows a robot to scale concrete, stucco, brick and masonry walls without using suction or adhesives. The approach is inspired by the mechanisms observed in some climbing insects and spiders and involves arrays of microspines that catch on surface asperities. The arrays are located(More)
Application of tangential skin displacement at the fingertip has been shown to be effective in communicating direction and has potential for several applications. We have developed a portable, fingertip-mounted tactile display capable of displacing and stretching the skin of the fingerpad, using a 7 mm hemispherical tactor. In vivo tests of fingerpad skin(More)
This work presents a new haptic device that integrates contact location feedback with grounded point-force display. The system consists of a thimble-based mechanism attached to the endpoint of a Phantom R ­ robotic arm. Contact location is rendered using a small tactile element that moves along the length of the user's fingerpad. The Phantom R ­ robot(More)
Tactile feedback could replace or augment visual and auditory communication in a range of important applications. This paper advances the field of tactile communication by presenting performance data on a variety of tactors and a finger restraint that is suitable for use in portable devices. Tactors, the contact elements between the device and the skin, and(More)
During tool-mediated interaction with everyday objects, we experience kinesthetic forces and tactile sensations in the form of vibration and skin deformation at the fingerpad. Fingerpad skin deformation is caused by forces applied tangentially and normally to the fingerpad skin, resulting in tangential and normal skin displacement. We designed a device to(More)
— We present a novel bio-inspired dynamic climbing robot, with a recursive name: ROCR is an Oscillating Climbing Robot. ROCR is a pendular two-link, serial chain robot that utilizes alternating hand-holds and an actuated tail to propel itself upward in a climbing style based on observation of human climbers and brachiating gibbons. ROCR's bio-inspired(More)
We present a new tactile display for use in dexterous telemanipu-lation and virtual reality. Our system renders the location of the contact centroid moving on the user's fingertip. Constructed in a thimble-sized package and mounted on a haptic force-feedback device, it provides the user with concurrent feedback of contact location and interaction forces. We(More)
Shared control represents a middle ground between supervisory control and traditional bilateral control in which the remote system can exert control over some aspects of the task while the human operator maintains access to low-level forces and motions. In the case of dexterous telemanipulation, a natural approach is to share control of the object handling(More)
This research focuses on the relative importance of fingerpad skin stretch on the perception of friction. It is hypothesized that the perceived magnitude of friction rendered by traditional force feedback can be increased through the addition of fingertip skin stretch. Perceptual data are presented from two separate tests performed on nine male subjects.(More)