Learn More
A variety of tasks could benefit from the availability of direction cues that do not rely on vision or sound. The application of tangential skin displacement at the fingertip has been found to be a reliable means of communicating direction and has potential to be rendered by a compact device. Our lab has conducted experiments exploring the use of this type(More)
— A new approach for climbing hard vertical surfaces has been developed that allows a robot to scale concrete, stucco, brick and masonry walls without using suction or adhesives. The approach is inspired by the mechanisms observed in some climbing insects and spiders and involves arrays of microspines that catch on surface asperities. The arrays are located(More)
Application of tangential skin displacement at the fingertip has been shown to be effective in communicating direction and has potential for several applications. We have developed a portable, fingertip-mounted tactile display capable of displacing and stretching the skin of the fingerpad, using a 7 mm hemispherical tactor. In vivo tests of fingerpad skin(More)
This work presents a new haptic device that integrates contact location feedback with grounded point-force display. The system consists of a thimble-based mechanism attached to the endpoint of a Phantom R ­ robotic arm. Contact location is rendered using a small tactile element that moves along the length of the user's fingerpad. The Phantom R ­ robot(More)
During tool-mediated interaction with everyday objects, we experience kinesthetic forces and tactile sensations in the form of vibration and skin deformation at the fingerpad. Fingerpad skin deformation is caused by forces applied tangentially and normally to the fingerpad skin, resulting in tangential and normal skin displacement. We designed a device to(More)
A new climbing robot has been developed that can scale flat, hard vertical surfaces including concrete, brick, stucco and masonry without using suction or adhesives. The robot can carry a payload equal to its own weight and can cling without consuming power. It employs arrays of miniature spines that catch opportunistically on surface asperities. The(More)
We present a new tactile display for use in dexterous telemanipu-lation and virtual reality. Our system renders the location of the contact centroid moving on the user's fingertip. Constructed in a thimble-sized package and mounted on a haptic force-feedback device, it provides the user with concurrent feedback of contact location and interaction forces. We(More)