William R. B. Lionheart

Learn More
Electrical impedance tomography (EIT) is an attractive method for clinically monitoring patients during mechanical ventilation, because it can provide a non-invasive continuous image of pulmonary impedance which indicates the distribution of ventilation. However, most clinical and physiological research in lung EIT is done using older and proprietary(More)
EIDORS is an open source software suite for image reconstruction in electrical impedance tomography and diffuse optical tomography, designed to facilitate collaboration, testing and new research in these fields. This paper describes recent work to redesign the software structure in order to simplify its use and provide a uniform interface, permitting easier(More)
A condition on nonuniqueness in optical tomography is stated. The main result applies to steady-state (dc) diffusion-based optical tomography, wherein we demonstrate that simultaneous unique recovery of diffusion and absorption coefficients cannot be achieved. A specific example of two images that give identical dc data is presented. If the refractive index(More)
Electrical impedance tomography (EIT) is a noninvasive imaging technique which aims to image the impedance within a body from electrical measurements made on the surface. The reconstruction of impedance images is a ill-posed problem which is both extremely sensitive to noise and highly computationally intensive. The authors define an experimental(More)
We review developments, issues and challenges in electrical impedance tomography (EIT) for the 4th Conference on Biomedical Applications of Electrical Impedance Tomography, held at Manchester in 2003. We focus on the necessity for three-dimensional data collection and reconstruction, efficient solution of the forward problem, and both present and future(More)
In the inverse conductivity problem, as in any ill-posed inverse problem, regularization techniques are necessary in order to stabilize inversion. A common way to implement regularization in electrical impedance tomography is to use Tikhonov regularization. The inverse problem is formulated as a minimization of two terms: the mismatch of the measurements(More)
We show that electrical impedance tomography (EIT) image reconstruction algorithms with regularization based on the total variation (TV) functional are suitable for in vivo imaging of physiological data. This reconstruction approach helps to preserve discontinuities in reconstructed profiles, such as step changes in electrical properties at interorgan(More)
In this paper, we review some numerical techniques based on the linear Krylov subspace iteration that can be used for the efficient calculation of the forward and the inverse electrical impedance tomography problems. Exploring their computational advantages in solving large-scale systems of equations, we specifically address their implementation in(More)
Electrical impedance tomography (EIT) calculates images of the body from body impedance measurements. While the spatial resolution of these images is relatively low, the temporal resolution of EIT data can be high. Most EIT reconstruction algorithms solve each data frame independently, although Kalman filter algorithms track the image changes across frames.(More)
In this study we consider the recovery of smooth region boundaries of piecewise constant coefficients of an elliptic PDE −∇ · a∇Φ + bΦ = f from data on the exterior boundary ∂Ω. The assumption is that the values of the coefficients (a, b) are known a priori but the information about the geometry of the smooth region boundaries where a and b are discontinous(More)