Learn More
A natural (evolutionary) classification is provided for 242 basic helix-loop-helix (bHLH) motif-containing proteins. Phylogenetic analyses of amino acid sequences describe the patterns of evolutionary change within the motif and delimit evolutionary lineages. These evolutionary lineages represent well known functional groups of proteins and can be further(More)
Quantitative analyses were carried out on a large number of proteins that contain the highly conserved basic helix–loop–helix domain. Measures derived from information theory were used to examine the extent of conservation at amino acid sites within the bHLH domain as well as the extent of mutual information among sites within the domain. Using the(More)
How 'complex' or composite morphological structures like the mammalian craniomandibular region arise during development and how they are altered during evolution are two major unresolved questions in biology. Herein, we have described a model for the development and evolution of complex morphological structures. The model assumes that natural selection acts(More)
Ontogenetic variation in the causal components of phenotypic variability and covariability is described for body weight and tail length in mice derived from a full 7 x 7 diallel cross. Age-related changes in additive, dominance, sex-linked and maternal variance and covariance between 14 and 70 days of age are described. Age-specific variance components at(More)
An integral assumption of many models of morphometric evolution is the equality of the genetic variance-covariance structure across evolutionary time. To examine this assumption, the quantitative-genetic aspects of morphometric form are examined for eight pelvic traits in laboratory rats (Rattus norvegicus) and random-bred ICR mice (Mus musculus). In both(More)
Biological sequences are composed of long strings of alphabetic letters rather than arrays of numerical values. Lack of a natural underlying metric for comparing such alphabetic data significantly inhibits sophisticated statistical analyses of sequences, modeling structural and functional aspects of proteins, and related problems. Herein, we use(More)
An information theoretic approach is used to examine the magnitude and origin of associations among amino acid sites in the basic helix-loop-helix (bHLH) family of transcription factors. Entropy and mutual information values are used to summarize the variability and covariability of amino acids comprising the bHLH domain for 242 sequences. When these(More)
The Myb family of proteins is a group of functionally diverse transcriptional activators found in both plants and animals that is characterized by a conserved DNA-binding domain of approximately 50 amino acids. Phylogenetic analyses of amino acid sequences of this family of proteins portray very disparate evolutionary histories in plants and animals. Animal(More)
Olfactomedin-related proteins are secreted glycoproteins with conserved C-terminal motifs. Olfactomedin was originally identified as the major component of the mucus layer that surrounds the chemosensory dendrites of olfactory neurons. Homologues were subsequently found also in other tissues, including the brain and in species ranging from Caenorhabditis(More)
The basic helix-loop-helix (bHLH) family of proteins is a group of functionally diverse transcription factors found in both plants and animals. These proteins evolved early in eukaryotic cells before the split of animals and plants, but appear to function in ‘plant-specific’ or ‘animal-specific’ processes. In animals bHLH proteins are involved in regulation(More)