Learn More
Pancreatic ductal adenocarcinoma (PDA) is among the most lethal human cancers in part because it is insensitive to many chemotherapeutic drugs. Studying a mouse model of PDA that is refractory to the clinically used drug gemcitabine, we found that the tumors in this model were poorly perfused and poorly vascularized, properties that are shared with human(More)
Recognition of modified histone species by distinct structural domains within 'reader' proteins plays a critical role in the regulation of gene expression. Readers that simultaneously recognize histones with multiple marks allow transduction of complex chromatin modification patterns into specific biological outcomes. Here we report that chromatin regulator(More)
Cancer cells exhibit increased glycolysis for ATP production due, in part, to respiration injury (the Warburg effect). Because ATP generation through glycolysis is less efficient than through mitochondrial respiration, how cancer cells with this metabolic disadvantage can survive the competition with other cells and eventually develop drug resistance is a(More)
Superoxide dismutases (SOD) are essential enzymes that eliminate superoxide radical (O2-) and thus protect cells from damage induced by free radicals. The active O2- production and low SOD activity in cancer cells may render the malignant cells highly dependent on SOD for survival and sensitive to inhibition of SOD. Here we report that certain oestrogen(More)
2-Methoxyestradiol (2-ME), a new anticancer agent currently in clinical trials, has been demonstrated to inhibit superoxide dismutase (SOD) and to induce apoptosis in leukemia cells through a free radical-mediated mechanism. Because the accumulation of superoxide (O(2)-) by inhibition of SOD depends on the cellular generation of O(2)-, we hypothesized that(More)
Although TP53 mutations are rare in B-cell chronic lymphocytic leukemia (CLL), Mdm2 overexpression has been reported as an alternative cause of p53 dysfunction. We investigated the potential therapeutic use of nongenotoxic p53 activation by a small-molecule antagonist of Mdm2, Nutlin-3a, in CLL. Nutlin-3a induced significant apoptosis in 30 (91%) of 33(More)
Tissue stromal cells interact with leukaemia cells and profoundly affect their viability and drug sensitivity. Here we show a biochemical mechanism by which bone marrow stromal cells modulate the redox status of chronic lymphocytic leukaemia (CLL) cells and promote cellular survival and drug resistance. Primary CLL cells from patients exhibit a limited(More)
This investigation analyzed the metabolism of 2',2'-difluorodeoxycytidine (dFdC) in K562 human leukemia cells and evaluated it as a biochemical modulator for the phosphorylation of several arabinosyl nucleosides. The rate of accumulation of dFdC triphosphate was linear up to 3 h and maximal during incubation with 10 microM dFdC (92 microM/h).(More)
The mechanisms of resistance to nucleoside analogues established in preclinical models are rarely found in primary tumors resistant to therapy with these agents. We tested the hypothesis that cells sense sublethal incorporation of analogues into DNA during replication and react by arresting further DNA synthesis and cell cycle progression. After removal of(More)
MOTIVATION In some applications, prior biological knowledge can be used to define a specific pattern of association of multiple endpoint variables with a genomic variable that is biologically most interesting. However, to our knowledge, there is no statistical procedure designed to detect specific patterns of association with multiple endpoint variables. (More)