Learn More
PURPOSE We develop a realistic and flexible 4-D digital mouse phantom and investigate its usefulness in molecular imaging research. METHODS Organ shapes were modeled with non-uniform rational B-spline (NURBS) surfaces based on high-resolution 3-D magnetic resonance microscopy (MRM) data. Cardiac and respiratory motions were modeled based on gated magnetic(More)
BACKGROUND Recent results from animal studies suggest that stem cells may be able to home to sites of myocardial injury to assist in tissue regeneration. However, the histological interpretation of postmortem tissue, on which many of these studies are based, has recently been widely debated. METHODS AND RESULTS With the use of the high sensitivity of a(More)
Respiratory motion can cause artifacts in myocardial SPECT. We incorporate respiratory mechanics into the current 4D MCAT and into the next generation spline-based MCAT phantoms. In order to simulate respiratory motion in the current MCAT phantom, the geometric solids for the diaphragm, heart, ribs, and lungs were altered through manipulation of parameters(More)
With continuing improvements in spatial resolution of positron emission tomography (PET) scanners, small patient movements during PET imaging become a significant source of resolution degradation. This work develops and investigates a comprehensive formalism for accurate motion-compensated reconstruction which at the same time is very feasible in the(More)
The four-dimensional (4-D) NURBS-based cardiac-torso (NCAT) phantom, which provides a realistic model of the normal human anatomy and cardiac and respiratory motions, is used in medical imaging research to evaluate and improve imaging devices and techniques, especially dynamic cardiac applications. One limitation of the phantom is that it lacks the ability(More)
The 4D extended cardiac-torso (XCAT) phantom was developed to provide a realistic and flexible model of the human anatomy and cardiac and respiratory motions for use in medical imaging research. A prior limitation to the phantom was that it did not accurately simulate altered functions of the heart that result from cardiac pathologies such as coronary(More)
BACKGROUND AND AIM In high-resolution emission tomography imaging, even small patient movements can considerably degrade image quality. The aim of this work was to develop a general approach to motion-corrected reconstruction of motion-contaminated data in the case of rigid motion (particularly brain imaging) which would be applicable to any PET scanner in(More)
BACKGROUND Computer simulations are important for validating novel image acquisition and reconstruction strategies. In cardiovascular magnetic resonance (CMR), numerical simulations need to combine anatomical information and the effects of cardiac and/or respiratory motion. To this end, a framework for realistic CMR simulations is proposed and its use for(More)
Using a heart motion observer, we compared the performance of two image reconstruction techniques, a 3D OS-EM algorithm with post Butterworth spatial filtering and a 4D MAP-RBI-EM algorithm. The task was to classify gated myocardial perfusion (GMP) SPECT images of beating hearts with or without regional motion abnormalities. Noise-free simulated GMP SPECT(More)