William Paul Robins

Learn More
BACKGROUND Although cholera has been present in Latin America since 1991, it had not been epidemic in Haiti for at least 100 years. Recently, however, there has been a severe outbreak of cholera in Haiti. METHODS We used third-generation single-molecule real-time DNA sequencing to determine the genome sequences of 2 clinical Vibrio cholerae isolates from(More)
Pathogens adapt to the host environment by altering their patterns of gene expression. Microarray-based and genetic techniques used to characterize bacterial gene expression during infection are limited in their ability to comprehensively and simultaneously monitor genome-wide transcription. We used massively parallel cDNA sequencing (RNA-seq) techniques to(More)
Advances in DNA sequencing technology have improved our ability to characterize most genomic diversity. However, accurate resolution of large structural events is challenging because of the short read lengths of second-generation technologies. Third-generation sequencing technologies, which can yield longer multikilobase reads, have the potential to address(More)
A wild-type T7 virion ejects about 850 bp of the 40 kb genome into the bacterial cell by a transcription-independent process. Internalization of the remainder of the genome normally requires transcription. Inhibition of transcription-independent DNA translocation beyond the leading 850 bp is not absolute but the time taken by a population of phage genomes(More)
In El Tor biotype strains of toxigenic Vibrio cholerae, the CTXϕ prophage often resides adjacent to a chromosomally integrated satellite phage genome, RS1, which produces RS1ϕ particles by using CTX prophage-encoded morphogenesis proteins. RS1 encodes RstC, an antirepressor against the CTXϕ repressor RstR, which cooperates with the host-encoded LexA protein(More)
Elongation of rod-shaped bacteria is mediated by a dynamic peptidoglycan-synthetizing machinery called the Rod complex. Here we report that, in Bacillus subtilis, this complex is functional in the absence of all known peptidoglycan polymerases. Cells lacking these enzymes survive by inducing an envelope stress response that increases the expression of RodA,(More)
Bacteriophage T7 relies on its own RNA polymerase (RNAp) to transcribe its middle and late genes. Early genes, which include the viral RNAp gene, are transcribed by the host RNAp from three closely spaced strong promoters-A1, A2, and A3. One middle T7 gene product, gp2, is a strong inhibitor of the host RNAp. Gp2 is essential and is required late in(More)
Modern genomic and bioinformatic approaches have been applied to interrogate the V. cholerae genome, the role of genomic elements in cholera disease, and the origin, relatedness, and dissemination of epidemic strains. A universal attribute of choleragenic strains includes a repertoire of pathogenicity islands and virulence genes, namely the CTXϕ prophage(More)
The sequence of a protein determines its function by influencing its folding, structure, and activity. Similarly, the most conserved residues of orthologous and paralogous proteins likely define those most important. The detection of important or essential residues is not always apparent via sequence alignments because these are limited by the depth of any(More)
Vibrio cholerae is lethal to the model host Drosophila melanogaster through mechanisms not solely attributable to cholera toxin. To examine additional virulence determinants, we performed a genetic screen in V. cholerae-infected Drosophila and identified the two-component system CrbRS. CrbRS controls transcriptional activation of acetyl-CoA synthase-1(More)