Learn More
A number of recent intensive and extended field campaigns have been devoted to the collection of land-surface fluxes from a variety of platforms, with the purpose of inferring the long-term C, water, and energy budgets across large areas (watershed, continental, or global scales). One approach to flux upscaling is to use land–atmosphere transfer schemes(More)
[1] Many applications exist within the fields of agriculture, forestry, land management, and hydrologic assessment for routine estimation of surface energy fluxes, particularly evapotranspiration (ET), at spatial resolutions of the order of 10 1 m. A new two-step approach (called the disaggregated atmosphere land exchange inverse model, or DisALEXI) has(More)
Thermal infrared (TIR) remote sensing of land-surface temperature (LST) provides valuable information about the sub-surface moisture status required for estimating evapotranspiration (ET) and detecting the onset and severity of drought. While empirical indices measuring anomalies in LST and vegetation amount (e.g., as quantified by the Normalized Difference(More)
The reliability of standard meteorological drought indices based on measurements of precipitation is limited by the spatial distribution and quality of currently available rainfall data. Furthermore, they reflect only one component of the surface hydrologic cycle, and they cannot readily capture nonprecipitation-based moisture inputs to the land surface(More)
This paper presents a review of methods for using remotely sensed data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) to estimate the energy fluxes from the land surface. The basic concepts of the energy balance at the land surface are presented along with an example of how remotely sensed surface brightness temperatures can(More)
Pesticide volatilization is a significant loss pathway that may have unintended consequences in nontarget environments. Field-scale pesticide volatilization involves the interaction of a number of complex variables. There is a need to acquire pesticide volatilization fluxes from a location where several of these variables can be held constant. Accordingly,(More)
Thermal-based modeling of coupled carbon, water, and energy fluxes using nominal light use efficiencies constrained by leaf chlorophyll observations" (2015). Abstract. Recent studies have shown that estimates of leaf chlorophyll content (Chl), defined as the combined mass of chlorophyll a and chlorophyll b per unit leaf area, can be useful for constraining(More)
Thermal infrared (TIR) imagery is normally acquired at coarser pixel resolution than that of shortwave sensors on the same satellite platform and often the TIR resolution is not suitable for monitoring crop conditions of individual fields or the impacts of land cover changes that are at significantly finer spatial scales. Consequently, thermal sharpening(More)
During the 1997 Southern Great Plains Hydrology Experiment (SGP97), passive microwave observations using the L-band electronically scanned thinned array radiometer (ESTAR) were used to extend surface soil moisture retrieval algorithms to coarser resolutions and larger regions with more diverse conditions. This near-surface soil moisture product ( ) at 800 m(More)