William P Krekelberg

Learn More
Although classical density functional theory provides reliable predictions for the static properties of simple equilibrium fluids under confinement, a theory of comparative accuracy for the transport coefficients has yet to emerge. Nonetheless, there is evidence that knowledge of how confinement modifies static behavior can aid in forecasting dynamics.(More)
The residual multiparticle entropy (RMPE) of two- and three-dimensional fluids changes sign near the freezing line, providing a quasiuniversal "one-phase" rule for the location of the liquid-solid transition. We present new simulation results for d-dimensional hard-sphere fluids (d=1-5) which show, however, that this freezing criterion fails in other(More)
It is known that there are thermodynamic states for which the Gaussian-core fluid displays anomalous properties such as expansion upon isobaric cooling (density anomaly) and increased single-particle mobility upon isothermal compression (self-diffusivity anomaly). Here, we investigate how temperature and density affect its short-range translational(More)
Rosenfeld [Phys. Rev. A 15, 2545 (1977)] originally noticed that casting the transport coefficients of simple monatomic equilibrium fluids in a specific dimensionless form makes them approximately single-valued functions of excess entropy. This observation has predictive value because, while the transport coefficients of dense fluids can be difficult to(More)
Compressing or cooling a fluid typically enhances its static interparticle correlations. However, there are notable exceptions. Isothermal compression can reduce the translational order of fluids that exhibit anomalous waterlike trends in their thermodynamic and transport properties, while isochoric cooling (or strengthening of attractive interactions) can(More)
When a fluid is confined to a nanopore, its thermodynamic properties differ from the properties of a bulk fluid, so measuring such properties of the confined fluid can provide information about the pore sizes. Here, we report a simple relation between the pore size and isothermal compressibility of argon confined in such pores. Compressibility is calculated(More)
Research Topics: Molecular modeling of complex fluids, investigation of phase transitions, study of interfacial phenomena, development of novel molecular simulation methods, molecular understanding of aqueous solutions, examination of the link between thermodynamic and transport properties.
  • 1