Learn More
A novel influenza A (H1N1) virus has spread rapidly across the globe. Judging its pandemic potential is difficult with limited data, but nevertheless essential to inform appropriate health responses. By analyzing the outbreak in Mexico, early data on international spread, and viral genetic diversity, we make an early assessment of transmissibility and(More)
Epidemiological studies of the naturally transformable bacterial pathogen Streptococcus pneumoniae have previously been confounded by high rates of recombination. Sequencing 240 isolates of the PMEN1 (Spain(23F)-1) multidrug-resistant lineage enabled base substitutions to be distinguished from polymorphisms arising through horizontal sequence transfer. More(More)
Genetic surveys reveal the diversity of bacteria and lead to the questioning of species concepts used to categorize bacteria. One difficulty in defining bacterial species arises from the high rates of recombination that results in the transfer of DNA between relatively distantly related bacteria. Barriers to this process, which could be used to define(More)
The Bacteria and Archaea are the most genetically diverse superkingdoms of life, and techniques for exploring that diversity are only just becoming widespread. Taxonomists classify these organisms into species in much the same way as they classify eukaryotes, but differences in their biology-including horizontal gene transfer between distantly related taxa(More)
Whole-genome sequencing of 616 asymptomatically carried Streptococcus pneumoniae isolates was used to study the impact of the 7-valent pneumococcal conjugate vaccine. Comparison of closely related isolates showed the role of transformation in facilitating capsule switching to non-vaccine serotypes and the emergence of drug resistance. However, such(More)
BACKGROUND Methods for assigning strains to bacterial species are cumbersome and no longer fit for purpose. The concatenated sequences of multiple house-keeping genes have been shown to be able to define and circumscribe bacterial species as sequence clusters. The advantage of this approach (multilocus sequence analysis; MLSA) is that, for any group of(More)
The use of antibiotics in agriculture is routinely described as a major contributor to the clinical problem of resistant disease in human medicine. While a link is plausible, there are no data conclusively showing the magnitude of the threat emerging from agriculture. Here, we define the potential mechanisms by which agricultural antibiotic use could lead(More)
Analysis of important human pathogen populations is currently under transition toward whole-genome sequencing of growing numbers of samples collected on a global scale. Since recombination in bacteria is often an important factor shaping their evolution by enabling resistance elements and virulence traits to rapidly transfer from one evolutionary lineage to(More)
Many bacterial and archaeal lineages have a history of extensive and ongoing horizontal gene transfer and loss, as evidenced by the large differences in genome content even among otherwise closely related isolates. How ecologically cohesive populations might evolve and be maintained under such conditions of rapid gene turnover has remained controversial.(More)
The evolution of bacterial populations has recently become considerably better understood due to large-scale sequencing of population samples. It has become clear that DNA sequences from a multitude of genes, as well as a broad sample coverage of a target population, are needed to obtain a relatively unbiased view of its genetic structure and the patterns(More)