Learn More
BACKGROUND The herpes simplex virus type 1 (HSV-1) ICP0 protein is an E3 ubiquitin ligase, which is encoded within the HSV-1 latency-associated locus. When ICP0 is not synthesized, the HSV-1 genome is acutely susceptible to cellular repression. Reciprocally, when ICP0 is synthesized, viral replication is efficiently initiated from virions or latent HSV-1(More)
Pharmacological evidence indicates that lymphocytes express opioid receptors, but this finding has been questioned. By DNA sequencing of reverse transcription-polymerase chain reaction products, we have found that mouse lymphocytes express mRNA encoding an orphan opioid receptor. These mRNA transcripts were detected in the CD4+, CD8+, and CD4- CD8-(More)
The capacity of herpes simplex virus type 1 (HSV-1) to replicate in vitro decreases tremendously when animal cell cultures are exposed to ligands of both the alpha/beta interferon (IFN-alpha/beta) receptor and IFN-gamma receptor prior to inoculation with low m.o.i.s of HSV-1. However, the available evidence provides no insight into the possible mechanisms(More)
The establishment of a primary trigeminal ganglion (TG) cell culture latently infected with herpes simplex virus type 1 (HSV-1) has been useful in studying stress-induced reactivation of the latent virus. However, the immune profile of this culture system prior to and after stress has never been established. In the present manuscript, cytokine and chemokine(More)
Glycoprotein D (gD-2) is the entry receptor of herpes simplex virus 2 (HSV-2), and is the immunogen in the pharmaceutical industry's lead HSV-2 vaccine candidate. Efforts to prevent genital herpes using gD-2 subunit vaccines have been ongoing for 20 years at a cost in excess of $100 million. To date, gD-2 vaccines have yielded equivocal protection in(More)
Infected-cell protein 0 (ICP0) is a RING finger E3 ligase that regulates herpes simplex virus (HSV) mRNA synthesis, and strongly influences the balance between latency and replication of HSV. For 25 years, the nuclear functions of ICP0 have been the subject of intense scrutiny. To obtain new clues about ICP0's mechanism of action, we constructed HSV-1(More)
BACKGROUND Interferon-gamma acts to multiply the potency with which innate interferons (alpha/beta) suppress herpes simplex virus type 1 (HSV-1) replication. Recent evidence suggests that this interaction is functionally relevant in host defense against HSV-1. However, it is not clear which WBCs of the innate immune system, if any, limit HSV-1 spread in an(More)
Herpes simplex virus 1 (HSV-1) ICP0(-) mutants are interferon-sensitive, avirulent, and elicit protective immunity against HSV-1 (Virol J, 2006, 3:44). If an ICP0(-) mutant of herpes simplex virus 2 (HSV-2) exhibited similar properties, such a virus might be used to vaccinate against genital herpes. The current study was initiated to explore this(More)
Several studies suggest that the innate interferons (IFNs), IFN-alpha and IFN-beta, can act in concert with IFN-gamma to synergistically inhibit the replication of cytomegalovirus and herpes simplex virus type 1 (HSV-1). The significance of this observation is not yet agreed upon in large part because the nature and magnitude of the interaction between(More)
We lack a correlate of immunity to herpes simplex virus 2 (HSV-2) that may be used to differentiate whether a HSV-2 vaccine elicits robust or anemic protection against genital herpes. This gap in knowledge is often attributed to a failure to measure the correct component of the adaptive immune response to HSV-2. However, efforts to identify a correlate of(More)