William M. Spears

Learn More
In this paper we explore the use of an adaptive search technique (genetic algorithms) to construct a system GABEL which continually learns and refines concept classification rules from its interaction with the environment. The performance of the system is measured on a set of concept learning problems and compared with the performance of two existing(More)
In this article, we explore the use of genetic algorithms (GAs) as a key element in the design and implementation of robust concept learning systems. We describe and evaluate a GA-based system called GABIL that continually learns and refines concept classification rules from its interaction with the environment. The use of GAs is motivated by recent studies(More)
We introduce a framework, called “physicomimetics,” that provides distributed control of large collections of mobile physical agents in sensor networks. The agents sense and react to virtual forces, which are motivated by natural physics laws. Thus, physicomimetics is founded upon solid scientific principles. Furthermore, this framework provides an(More)
On the basis of early theoretical and empirical studies, genetic algorithms have typically used 1 and 2-point crossover operators as the standard mechanisms for implementing recombination. However, there have been a number of recent studies, primarily empirical in nature, which have shown the benefits of crossover operators involving a higher number of(More)
We introduce a novel framework called “artificial physics”, which provides distributed control of large collections of agents. The agents react to artificial forces that are motivated by natural physical laws. This framework provides an effective mechanism for achieving self-assembly, fault-tolerance, and self-repair. Examples are shown for various regular(More)
In this paper we develop an empirical methodology for studying the behavior of evolutionary algorithms based on problem generators. We then describe three generators that can be used to study the effects of epistasis on the performance of EAs. Finally, we illustrate the use of these ideas in a preliminary exploration of the effects of epistasis on simple(More)
In this paper we present some theoretical and empirical results on the interacting roles of population size and crossover in genetic algorithms. We summarize recent theoretical results on the disruptive effect of two forms of multi-point crossover: npoint crossover and uniform crossover. We then show empirically that disruption analysis alone is not(More)