William L. Wishart

Learn More
Double stranded, short interfering RNAs (siRNA) of 21-22 nt length initiate a sequence-specific, post-trancriptional gene silencing in animals and plants known as RNA interference (RNAi). Here we show that RNAi can block a pathophysiological pain response and provide relief from neuropathic pain in a rat disease model by down regulating an endogenous,(More)
The excitation of nociceptive sensory neurons by ATP released in injured tissue is believed to be mediated partly by P2X3 receptors. Although an analysis of P2X3 knock-out mice has revealed some deficits in nociceptive signaling, detailed analysis of the role of these receptors is hampered by the lack of potent specific pharmacological tools. Here we have(More)
Sphingosine-1-phosphate (S1P) receptors are widely expressed in the central nervous system where they are thought to regulate glia cell function. The phosphorylated version of fingolimod/FTY720 (FTY720P) is active on a broad spectrum of S1P receptors and the parent compound is currently in phase III clinical trials for the treatment of multiple sclerosis.(More)
The lymphokine interleukin-2 (IL-2) is responsible for autocrine cell cycle progression and regulation of immune responses. Uncontrolled secretion of IL-2 results in adverse reactions ranging from anergy, to aberrant T cell activation, to autoimmunity. With the use of fluorescent in situ hybridization and single-cell polymerase chain reaction in cells with(More)
Synthetic 21-bp-long short interfering RNAs (siRNA) can stimulate sequence-specific mRNA degradation in mammalian cell cultures, a process referred to as RNA interference (RNAi). In the present study, the potential of RNAi was compared to the traditional antisense approach, acting mainly via RnaseH, for targeting the recombinant rat pain-related(More)
Transposons are discrete segments of DNA which are capable of moving from one site in a genome to many different sites. Tn3 is a prokaryotic transposon which is 4,957 base pairs (bp) long and encodes a transposase protein which is essential for transposition. We report here a simple method for purifying Tn3 transposase and demonstrate that the transposase(More)
The development of high-content screening technologies including automated immunostaining, automated image acquisition and automated image analysis have enabled higher throughput of cellular imaging-based assays. Here we used high-content imaging to thoroughly characterize the cultures of primary rat cerebellar granule neurons (CGNs). We describe procedures(More)
Efficient tissue-specific delivery is a crucial factor in the successful development of therapeutic oligonucleotides. Screening for novel delivery methods with unique tissue-homing properties requires a rapid, sensitive, flexible and unbiased technique able to visualize the in vivo biodistribution of these oligonucleotides. Here, we present whole body(More)
  • 1