William L. Neumann

Learn More
Peroxynitrite (PN; ONOO⁻) and its reactive oxygen precursor superoxide (SO; O₂•⁻) are critically important in the development of pain of several etiologies including pain associated with chronic use of opiates such as morphine (also known as opiate-induced hyperalgesia and antinociceptive tolerance). This is now an emerging field in which considerable(More)
Chemotherapy-induced peripheral neuropathy (CIPN) accompanied by chronic neuropathic pain is a major dose-limiting side effect of a large number of antitumoral agents including paclitaxel (Taxol). Thus, CIPN is one of most common causes of dose reduction and discontinuation of what is otherwise a life-saving therapy. Neuropathological changes in spinal cord(More)
[reaction: see text] A new method for the synthesis of protected benzamidines is described. The commercially available 1,3-bis(tert-butoxycarbonyl)-2-methyl-2-thiopseudourea guanidylation reagent, after SEM-protection, functions as an amidine-forming cross-coupling partner under Liebeskind-Srogl conditions. In the presence of copper(I) thiophenecarboxylate(More)
Superoxide (SO, O(2)·(-)) and its reaction product peroxynitrite (PN, ONOO(-)) have been shown to be important in the development of pain of several etiologies. While significant progress has been made in teasing out the relative contribution of SO and PN peripherally, spinally, and supraspinally during the development and maintenance of central(More)
Treatment of severe pain by morphine, the gold-standard opioid and a potent drug in our arsenal of analgesic medications, is limited by the eventual development of hyperalgesia and analgesic tolerance. We recently reported that systemic administration of a peroxynitrite (PN) decomposition catalyst (PNDC) or superoxide dismutase mimetic attenuates morphine(More)
Structure-based drug design (SBDD) and polymer-assisted solution-phase (PASP) library synthesis were used to develop a series of pyrazinone inhibitors of the Tissue Factor/Factor VIIa (TF/VIIa) complex. The crystal structure of a tripeptide-alpha-ketothiazole complexed with TF/VIIa was utilized in a docking experiment to identify the pyrazinone core as a(More)
Pyrazine-labeled multicompartment nanostructures are shown to exhibit enhanced pH-responsive blue-shifted fluorescence emission intensities compared to their simpler core-shell spherical analogs. An amphiphilic linear triblock terpolymer of ethylene oxide, N-acryloxysuccinimide, and styrene, PEO(45)-b-PNAS(105)-b-PS(45), which lacks significant(More)
Herein is described the design, synthesis, and enzymatic activity of a series of substituted pyrazinones as inhibitors of the TF/VIIa complex. These inhibitors were designed to explore replacement and variation of the P1 amidine described previously [J. Med. Chem.2003, 46, 4050]. The P1 needle replacements were selected based upon their reduced basicity(More)
Peroxynitrite has been implicated in β-cell dysfunction and insulin resistance in obesity. Chemical catalysts that destroy peroxynitrite, therefore, may have therapeutic value for treating type 2 diabetes. To this end, we have recently demonstrated that Mn(III) bis(hydroxyphenyl)-dipyrromethene complexes, SR-135 and its analogs, can effectively catalyze the(More)
Peroxynitrite (PN, ONOO(-)) is a potent oxidant and nitrating agent that contributes to pain through peripheral and spinal mechanisms, but its supraspinal role is unknown. We present evidence here that PN in the rostral ventromedial medulla (RVM) is essential for descending nociceptive modulation in rats during inflammatory and neuropathic pain through(More)