Learn More
A stage-structured population model for the Florida manatee (Trichechus manatus latirostris) was developed that explicitly incorporates uncertainty in parameter estimates. The growth rates calculated with this model reflect the status of the regional populations over the most recent 10-yr period. The Northwest and Upper St. Johns River regions have growth(More)
Occupancy statistical models that account for imperfect detection have proved very useful in several areas of ecology, including species distribution and spatial dynamics, disease ecology, and ecological responses to climate change. These models are based on the collection of multiple samples at each of a number of sites within a given season, during which(More)
Analytical methods accounting for imperfect detection are often used to facilitate reliable inference in population and community ecology. We contend that similar approaches are needed in disease ecology because these complicated systems are inherently difficult to observe without error. For example, wildlife disease studies often designate individuals,(More)
1. Industrial longline fishing has been suspected to impact upon black-footed albatross populations Phoebastria nigripes by increasing mortality, but no precise estimates of bycatch mortality are available to ascertain this statement. We present a general framework for quantifying the relationship between albatross population and longline fishing in absence(More)
Aerial surveys are often used to estimate the density of wildlife populations. A common problem is underestimation of population density due to animals being missed. This visibility bias can be quite serious and in this paper we review various methods of attempting its estimation. A variety of methods based on comparison with ground counts, use of a(More)
Estimates of waterfowl demographic parameters often come from resighting studies where birds fit with individually identifiable neck collars are resighted at a distance. Concerns have been raised about the effects of collar loss on parameter estimates, and the reliability of extrapolating from collared individuals to the population. Models previously(More)
Capture-recapture models are widely used to estimate demographic parameters of marked populations. Recently, this statistical theory has been extended to modeling dispersal of open populations. Multistate models can be used to estimate movement probabilities among subdivided populations if multiple sites are sampled. Frequently, however, sampling is limited(More)
For the purposes of making many informed conservation decisions, the main goal for data collection is to assess population status and allow prediction of the consequences of candidate management actions. Reducing the bias and variance of estimates of population parameters reduces uncertainty in population status and projections, thereby reducing the overall(More)
Matrix population models that allow an animal to occupy more than one state over time are important tools for population and evolutionary ecologists. Definition of state can vary, including location for metapopulation models and breeding state for life history models. For populations whose members can be marked and subsequently reencountered, multistate(More)
We present a novel formulation of a mark-recapture-resight model that allows estimation of population size, stopover duration, and arrival and departure schedules at migration areas. Estimation is based on encounter histories of uniquely marked individuals and relative counts of marked and unmarked animals. We use a Bayesian analysis of a state-space(More)