William J. O'Sullivan

Learn More
Catalytic RNA (ribozymes) suppressed the growth of the human malarial parasite Plasmodium falciparum in vitro. The phosphorothioated hammerhead ribozymes targeted unique regions of the P. falciparum carbamoyl-phosphate synthetase II gene. The P. falciparum carbamoyl-phosphate synthetase II gene encodes the first and limiting enzyme in the pathway, and its(More)
In order for the plasmodium malarial parasite to replicate in the human erythrocyte it requires metabolic pathways which are not operative in the host erythrocyte. Thus, the malarial parasite not only synthesizes enzymes for purine salvage and interconversion, for the pyrimidine biosynthetic pathway de novo, and for the folate cycle, but it also alters the(More)
Growth of Giardia intestinalis in Diamond's TYI-S-33 medium is characterized by a rapid depletion of the arginine in the medium, and concurrent production of ornithine and ammonia. [Guanidino-14C] arginine was converted to 14CO2 by extracts of G. intestinalis suggesting the presence of the arginine dihydrolase pathway. This was confirmed by the detection of(More)
1H-NMR spectroscopy was used to monitor the major metabolic end products released by Giardia lamblia when maintained anaerobically in culture in Diamond's TYI-S-33 medium. Spectra were acquired for the cell-free medium and the resonances of metabolites utilised and produced during cell growth identified by the addition of pure compounds and by difference(More)
Proton nuclear magnetic resonance (NMR) spectroscopy was used to follow glucose metabolism in Crithidia luciliae. Parasites were grown aerobically and anaerobically in culture, with glucose as the major carbon source and 1H NMR spectra were acquired for the cell free medium. The 1H NMR resonances of metabolites utilised and produced during cell growth were(More)