Learn More
We describe in detail the theory underpinning the measurement of density matrices of a pair of quantum two-level systems ͑''qubits''͒. Our particular emphasis is on qubits realized by the two polarization degrees of freedom of a pair of entangled photons generated in a down-conversion experiment; however, the discussion applies in general, regardless of the(More)
During the past decade, research into superconducting quantum bits (qubits) based on Josephson junctions has made rapid progress. Many foundational experiments have been performed, and superconducting qubits are now considered one of the most promising systems for quantum information processing. However, the experimentally reported coherence times are(More)
We evaluate the performance of quantum arithmetic algorithms run on a distributed quantum computer (a quantum multicomputer). We vary the node capacity and I/O capabilities, and the network topology. The tradeoff of choosing between gates executed remotely, through "teleported gates" on entangled pairs of qubits (telegate), versus exchanging the relevant(More)
Linear optics with photon counting is a prominent candidate for practical quantum computing. The protocol by Knill, Laflamme, and Milburn ͓2001, Nature ͑London͒ 409, 46͔ explicitly demonstrates that efficient scalable quantum computing with single photons, linear optical elements, and projective measurements is possible. Subsequently, several improvements(More)
quantum information, Schrödinger cat states, coherent states, conditional measurements We show that quantum computation circuits using coherent states as the logical qubits can be constructed from simple linear networks, conditional photon measurements and " small " coherent superposition resource states. We show that quantum computation circuits using(More)
We present here a new approach to scalable quantum computing—a 'qubus computer'—which realizes qubit measurement and quantum gates through interacting qubits with a quantum communication bus mode. The qubits could be 'static' matter qubits or 'flying' optical qubits, but the scheme we focus on here is particularly suited to matter qubits. There is no(More)
Quantum cryptographic technology (QCT) is expected to be a fundamental technology for realizing long-term information security even against as-yet-unknown future technologies. More advanced security could be achieved using QCT together with contemporary cryptographic technologies. To develop and spread the use of QCT, it is necessary to standardize devices,(More)
We investigate the utility of nonclassical states of simple harmonic oscillators, particularly a superposition of coherent states, for sensitive force detection. We find that like squeezed states, a superposition of coherent states allows displacement measurements at the Heisenberg limit. Entangling many superpositions of coherent states offers a(More)
We define the task of quantum tagging, that is, authenticating the classical location of a classical tagging device by sending and receiving quantum signals from suitably located distant sites, in an environment controlled by an adversary whose quantum information processing and transmitting power is unbounded. We define simple security models for this task(More)