William J. Menz

Learn More
This work presents a sequential modular approach to solve a generic network of reactors with a population balance model using a stochastic numerical method. Full-coupling to the gas-phase is achieved through operator-splitting. The convergence of the stochastic particle algorithm in test networks is evaluated as a function of network size, recycle fraction(More)
The aim of this work is to present the mathematical description of a detailed multivariate population balance model to describe the structure and composition of silica nanoparticles. Silica nanoparticles are formed by the interaction of silicic acid monomers (Si(OH) 4)in the gas-phase. A detailed numerical study of a stochastic particle algorithm for the(More)
  • 1