Learn More
Protein disulfide isomerase plays a key role in catalyzing the folding of secretory proteins. It features two catalytically inactive thioredoxin domains inserted between two catalytically active thioredoxin domains and an acidic C-terminal tail. The crystal structure of yeast PDI reveals that the four thioredoxin domains are arranged in the shape of a(More)
During endoplasmic reticulum-associated degradation, the multifunctional AAA ATPase p97 is part of a protein degradation complex. p97 associates via its N-terminal domain with various cofactors to recruit ubiquitinated substrates. It also interacts with alternative substrate-processing cofactors, such as Ufd2, Ufd3, and peptide:N-glycanase (PNGase) in(More)
It has been proposed that cytoplasmic peptide:N-glycanase (PNGase) may be involved in the proteasome-dependent quality control machinery used to degrade newly synthesized glycoproteins that do not correctly fold in the ER. However, a lack of information about the structure of the enzyme has limited our ability to obtain insight into its precise biological(More)
To obtain information on the mechanism of glycosylation of ovalbumin, three types of experiments were performed with either hen oviduct membrane preparations or tissue slices and the antibiotic tunicamycin. First, experiments involving the addition of tunicamycin to oviduct membranes demonstrated that this antibiotic inhibited the synthesis of a(More)
Dolichol in the form of dolichyl phosphate participates in the synthesis of N- and O-linked glycoproteins and phosphatidylinositol-linked proteins in the yeast Saccharomyces cerevisiae. In this organism, as well as in higher eukaryotes, a number of the enzymes in the polyisoprenoid and glycoprotein biosynthetic pathways have not been identified. In this(More)
Protein disulfide isomerase (PDI) is believed to function in vivo by catalyzing the isomerization of disulfide bonds in proteins and thereby facilitating their folding. In S. cerevisiae PDI is encoded by an essential gene. Deletion of nearly one-third of the C-terminal residues of PDI altered PDI's cellular localization but not cell viability. Further(More)