William J. Broughton

Learn More
Globally, 800 million people are malnourished. Heavily subsidised farmers in rich countries produce sufficient surplus food to feed the hungry, but not at a price the poor can afford. Even donating the rich world's surplus to the poor would not solve the problem. Most poor people earn their living from agriculture, so a deluge of free food would destroy(More)
Access to mineral nitrogen often limits plant growth, and so symbiotic relationships have evolved between plants and a variety of nitrogen-fixing organisms. These associations are responsible for reducing 120 million tonnes of atmospheric nitrogen to ammonia each year. In agriculture, independence from nitrogenous fertilizers expands crop production and(More)
Eukaryotes often form symbioses with microorganisms. Among these, associations between plants and nitrogen-fixing bacteria are responsible for the nitrogen input into various ecological niches. Plants of many different families have evolved the capacity to develop root or stem nodules with diverse genera of soil bacteria. Of these, symbioses between legumes(More)
Based on the DNA sequence of the symbiotic plasmid of Rhizobium strain NGR234, we predicted potential rearrangements generated by homologous recombination. All predicted rearrangements were identified experimentally by using a PCR-based methodology. Thus, the predicted and the actual dynamic maps of the replicon coincide. By using an approach that does not(More)
Rhizobium sp. strain NGR234 possesses a functional type three secretion system (TTSS), through which a number of proteins, called nodulation outer proteins (Nops), are delivered to the outside of the cell. A major constraint to the identification of Nops is their low abundance in the supernatants of NGR234 strains grown in culture. To overcome this(More)
Most of the bacterial genes involved in nodulation of legumes (nod, nol and noe ) as well as nitrogen fixation (nif and fix ) are carried on pNGR234a, the 536 kb symbiotic plasmid (pSym) of the broad-host-range Rhizobium sp. NGR234. Putative transcription regulators comprise 24 of the predicted 416 open reading frames (ORFs) contained on this replicon.(More)
The type three secretion system (TTSS) encoded by pNGR234a, the symbiotic plasmid of Rhizobium sp. strain NGR234, is responsible for the flavonoid- and NodD1-dependent secretion of nodulation outer proteins (Nops). Abolition of secretion of all or specific Nops significantly alters the nodulation ability of NGR234 on many of its hosts. In the closely(More)
Symbiosis-stimulated chitinase isoenzymes of soybean (Glycine max (L.) Merr.) Abstract and to be colonized by arbuscular mycorrhiza (AM) fungi (Harrison, 1997). Often, nodule formation by a Isoforms of endochitinase in soybean were studied in given bacterial strain is restricted to only a few host plant relation to root symbiosis. Five selected cultivars(More)
Much of the remarkable ability of Rhizobium sp. strain NGR234 to nodulate at least 110 genera of legumes, as well as the nonlegume Parasponia andersonii, stems from the more than 80 different Nod factors it secretes. Except for nodE, nodG, and nodPQ, which are on the chromosome, most Nod factor biosynthesis genes are dispersed over the 536,165-bp symbiotic(More)
BACKGROUND In nitrate-poor soils, many leguminous plants form nitrogen-fixing symbioses with members of the bacterial family Rhizobiaceae. We selected Rhizobium sp. NGR234 for its exceptionally broad host range, which includes more than I 12 genera of legumes. Unlike the genome of Bradyrhizobium japonicum, which is composed of a single 8.7 Mb chromosome,(More)