William J Altenhof

Learn More
This research focuses on the injury potential of children seated in forward-facing child safety seats during side impact crashes in a near-side seated position. Side impact dynamic sled tests were conducted by NHTSA at Transportation Research Center Inc. (TRC) using a Hybrid III 3-year-old child dummy seated in a convertible forward/rearward child safety(More)
A finite element/multi-body model of a newborn infant has been developed by researchers at the University of Windsor. The geometry of this model is derived from a Nita newborn hospital training mannequin. It consists of 17 parts: eight upper and lower limb segments, the torso, head, and a seven-segment neck with seven translational and eight rotational(More)
This research focuses on an investigation into the head and neck injuries sustained by toddlers due to CRS misuse under frontal and side impact crashes. A fully deformable FE model incorporating a Hybrid III 3-year-old dummy was developed which has been previously validated for frontal impacts under CMVSS 208 and FMVSS 213 testing conditions. Furthermore,(More)
The purpose of this study was to determine whether modifying an existing, highly biofidelic full body finite element model [total human model for safety (THUMS)] would produce valid amplitude and temporal shock wave characteristics as it travels proximally through the lower extremity. Modifying an existing model may be more feasible than developing a new(More)
The smoothed-particle hydrodynamics (SPH) technique was used to model experimentally observed large deformation behaviour of aluminum (1100 Al) during machining. The effectiveness of the SPH method in predicting the response of the 1100 Al workpiece during orthogonal machining has been assessed through a careful comparison with the experimentally measured(More)
Quantifying soft tissue motion following impact is important in human motion analysis as soft tissues attenuate potentially injurious forces resulting from activities such as running and jumping. This study determined the reliability of leg soft tissue position and velocity following heel impacts. A grid of black dots was applied to the skin of the right(More)
OBJECTIVE This study focuses on methods to reduce injuries, specifically in the head and neck region, sustained by children seated in forward-facing child restraint system during a frontal vehicle crash. The main objective of this research was to implement load-limiting behavior into the upper tether and lower LATCH anchors of the CRS in order to reduce the(More)
This research focuses on the injury potential of children in forward and rearward facing child restraint seats in frontal collisions. Vehicle crash tests were completed following the guidelines outlined in the Canadian Motor Vehicle Safety Standard 208 using a Hybrid III three-year-old dummy in a convertible forward/rearward facing child restraint seat. The(More)
  • 1