Learn More
BACKGROUND Hypophosphatemia is common in critically ill patients and has been associated with generalized muscle weakness, ventilatory failure and myocardial dysfunction. Continuous renal replacement therapy causes phosphate depletion, particularly with prolonged and intensive therapy. In a prospective observational cohort of critically ill patients with(More)
Acute kidney injury (AKI) is a serious complication, commonly occurring in the critically ill population, with devastating short- and long-term consequences. Despite standardization of the definition and staging of AKI, early recognition remains challenging given that serum creatinine level is a marker, albeit imperfect, of kidney function and not kidney(More)
Silicon micromachining provides the precise control of nanoscale features that can be fundamentally enabling for miniaturized, implantable medical devices. Concerns have been raised regarding blood biocompatibility of silicon-based materials and their application to hemodialysis and hemofiltration. A high-performance ultrathin hemofiltration membrane with(More)
Silicon membranes with highly uniform nanopore sizes fabricated using microelectromechanical systems (MEMS) technology allow for the development of miniaturized implants such as those needed for renal replacement therapies. However, the blood compatibility of silicon has thus far been an unresolved issue in the use of these substrates in implantable(More)
The confluence of an increasing prevalence of end-stage renal disease (ESRD), clinical trial data suggestive of benefit from quotidian dialysis, and ongoing cost/benefit reanalysis of healthcare spending have stimulated interest in technological improvements in provision of ESRD care. For the last decade, our group has focused on enabling technologies that(More)
The nearly 400000 American patients on dialysis suffer high cardiovascular and infectious mortality, but there is now evidence that this morbid phenotype can be rescued by intensive dialytic therapy. Self-care dialysis at home is limited by patient fears about skill and safety. An implanted artificial kidney would provide the benefits of intensive therapy(More)
BACKGROUND AND OBJECTIVES Current recommendations for piperacillin-tazobactam dosing in patients receiving continuous renal replacement therapy originate from studies with relatively few patients and lower continuous renal replacement therapy doses than commonly used today. This study measured the pharmacokinetic and pharmacodynamic characteristics of(More)
The effect of AKI and modern continuous RRT (CRRT) methods on drug disposition (pharmacokinetics) and response has been poorly studied. Pharmaceutical manufacturers have little incentive to perform pharmacokinetic studies in patients undergoing CRRT because such studies are neither recommended in existing US Food and Drug Administration (FDA) guidance(More)
Current renal substitution therapy with hemodialysis or hemofiltration has been an important life-sustaining technology, but it still has suboptimal clinical outcomes in patients with end-stage renal disease or acute renal failure. This therapy replaces the small solute clearance function of the glomerulus but does not replace the metabolic and(More)
The effects of pore size on the performance of ultrafiltration membranes are fairly well understood, but there is currently no information on the impact of pore geometry on the trade-off between the selectivity and permeability for membranes with pore size below 100 nm. Experimental data are presented for both commercial ultrafiltration membranes and for(More)