William H. Fissell

Learn More
Silicon membranes with highly uniform nanopore sizes fabricated using microelectromechanical systems (MEMS) technology allow for the development of miniaturized implants such as those needed for renal replacement therapies. However, the blood compatibility of silicon has thus far been an unresolved issue in the use of these substrates in implantable(More)
Most current microfluidic cell culture systems are integrated single use devices. This can limit throughput and experimental design options, particularly for epithelial cells, which require significant time in culture to obtain a fully differentiated phenotype. In addition, epithelial cells require a porous growth substrate in order to fully polarize their(More)
Hemodialysis using hollow-fiber membranes provides life-sustaining treatment for nearly 2 million patients worldwide with end stage renal disease (ESRD). However, patients on hemodialysis have worse long-term outcomes compared to kidney transplant or other chronic illnesses. Additionally, the underlying membrane technology of polymer hollow-fiber membranes(More)
BACKGROUND The purpose of this study was to investigate the utility and limitations of various imaging modalities in the noninvasive assessment of a novel compact hemodialyzer under development for renal replacement therapy, with specific aim towards monitoring its functional performance. METHODS The prototype is a 4×3×6 cm aluminum cartridge housing(More)
Surface charge characterization is important in the design and testing of coatings and membranes for biological and industrial applications, but commercial zeta potential meters are expensive and difficult to adapt to a variety of membrane designs. We combined inexpensive off-the-shelf components, a test mount fabricated with a conventional rapid(More)
  • 1