Learn More
A panel of international experts was convened in Madison, Wisconsin, in 2005, as part of the 8th International Conference on Mercury as a Global Pollutant. Our charge was to address the state of science pertinent to source attribution, specifically our key question was: "For a given location, can we ascertain with confidence the relative contributions of(More)
Anthropogenic activities have enriched mercury in the biosphere by at least a factor of three, leading to increases in total mercury (Hg) in the surface ocean. However, the impacts on ocean fish and associated trends in human exposure as a result of such changes are less clear. Here we review our understanding of global mass budgets for both inorganic and(More)
The partitioning of gaseous mercury between the atmosphere and surface waters was determined in the equatorial Pacific Ocean. The highest concentrations of dissolved gaseous mercury occurred in cooler, nutrient-rich waters that characterize equatorial upwelling and increased biological productivity at the sea surface. The surface waters were supersaturated(More)
Global atmospheric changes carry the potential to disrupt the normal cycling of mercury and its compounds. Acid rain may increase methylmercury levels in freshwater fish. Global warming and increased ultraviolet radiation may affect the global budget of methylmercury, including its formation and degradation in both biotic and abiotic environments. In this(More)
We reconstruct from lake-sediment archives atmospheric Hg deposition to Arctic Alaska over the last several centuries and constrain a contemporary lake/watershed mass-balance with real-time measurement of Hg fluxes in rainfall, runoff, and evasion. Results indicate that (a) anthropogenic Hg impact in the Arctic is of similar magnitude to that at temperate(More)
Humans are exposed to methylmercury (MeHg) principally by consumption of marine fish. The coastal zone supports the majority of marine fish production, and may therefore be an important source of MeHg to humans; however, little is known about the bioaccumulation of MeHg in near-shore marine ecosystems. We examined MeHg in microseston, zooplankton, a decapod(More)
The utility of ombrotrophic bogs as archives of atmospheric mercury deposition was assessed with an investigation in Arlberg Bog, Minnesota, U.S.A. Since the use of ombrotrophic bogs as archives depends on the immobility of deposited trace metals, we examined the postdepositional transport processes revealed by the solid-phase distributions of mercury and(More)
A connection between loadings of inorganic Hg, especially from the atmosphere, and accumulation of methylmercury (MeHg) in aquatic biota has not been firmly established. Mosquitoes (Diptera: Culicidae) may be a useful indictor of Hg contamination or MeHg accumulation in aquatic ecosystems because they have aquatic life stages, and their ubiquitous(More)
We examined temporal differences in sedimentary production of monomethylmercury (MMHg) at three sites in Long Island Sound (LIS). Sediment-phase concentrations of Hg species decreased from west to east in LIS surface sediments, following the trend of organic matter. However, Hg methylation potentials, measured by incubation with an isotopic tracer (200Hg),(More)