William E. Zackert

Learn More
It has heretofore been assumed that the cyclooxygenases (COXs) are solely responsible for peostaglandin (PG) synthesis in vivo. An important structural feature of PGH2 formed by COX is the trans-configuration of side chains relative to the prostane ring. Previously, we reported that a series of PG-like compounds termed isoprostanes (IsoPs) are formed in(More)
Muscle injury (rhabdomyolysis) and subsequent deposition of myoglobin in the kidney causes renal vasoconstriction and renal failure. We tested the hypothesis that myoglobin induces oxidant injury to the kidney and the formation of F2-isoprostanes, potent renal vasoconstrictors formed during lipid peroxidation. In low density lipoprotein (LDL), myoglobin(More)
We recently reported the discovery that a series of novel prostaglandin (PG)F2-like compounds (F2-isoprostanes) are produced in vivo independent of the cyclooxygenase as products of free radical-catalyzed lipid peroxidation. F2-isoprostanes are initially formed in situ from arachidonic acid esterified to phospholipids and then released preformed. We have(More)
The discovery of IsoPs as products of nonenzymatic lipid peroxidation has opened up new areas of investigation regarding the role of free radicals in human physiology and pathophysiology. The quantification of IsoPs as markers of oxidative stress status appears to be an important advance in our ability to explore the role of free radicals in the(More)
F2-isoprostanes are prostaglandin-like products of nonenzymatic lipid peroxidation. Measurement of levels of endogenous unmetabolized F2-isoprostanes has proven to be a valuable approach to assess oxidative stress in vivo. However, measurement of levels of urinary metabolites of F2-isoprostanes in timed urine collections offers an advantage over measuring(More)
Increased expression of cyclooxygenase (COX) and overproduction of prostaglandins (PGs) have been implicated in the development and progression of colorectal cancer (CRC). Nonsteroidal anti-inflammatory agents (NSAIDS) inhibit growth of various CRC cell lines by both COX-dependent and COX-independent pathways. To specifically examine the effect of COX and(More)
The F2-isoprostanes (F2-IsoP) are a series of prostaglandin (PG)-F2-like compounds that are produced by free-radical-mediated oxidation of arachidonic acid. One F2-IsoP with potent biological activity is 15-F2t-IsoP and increased levels of 15-F(2t)-IsoP have been measured in several diseases. The major urinary metabolite of 15-F2t-IsoP (8-iso-PGF(2alpha))(More)
The isoprostanes (IsoPs) are a series of novel prostaglandin (PG)-like compounds generated from the free radical-catalyzed peroxidation of arachidonic acid. The first series of IsoPs characterized contained F-type prostane rings analogous to PGF2alpha. One F-ring IsoP, 15-F2t-IsoP (8-iso-PGF2alpha) has been shown to be formed in abundance in vivo and to(More)
The isoprostanes (IsoPs) are novel bioactive prostaglandin-like compounds produced in vivo by free radical-catalyzed peroxidation of arachidonyl-containing lipids. Previously, we have identified IsoPs containing F-type and D- and E-type prostane rings that are formed by reduction and rearrangement of IsoP endoperoxide intermediates, respectively. We now(More)