William E. Bentley

Learn More
The bacterial quorum-sensing autoinducer 2 (AI-2) has received intense interest because the gene for its synthase, luxS, is common among a large number of bacterial species. We have identified luxS-controlled genes in Escherichia coli under two different growth conditions using DNA microarrays. Twenty-three genes were affected by luxS deletion in the(More)
The traditional motivation for integrating biological components into microfabricated devices has been to create biosensors that meld the molecular recognition capabilities of biology with the signal processing capabilities of electronic devices. However, a different motivation is emerging; biological components are being explored to radically change how(More)
Staphylococcus aureus responds with protective strategies against phagocyte-derived reactive oxidants to infect humans. Herein, we report the transcriptome analysis of the cellular response of S. aureus to hydrogen peroxide-induced oxidative stress. The data indicate that the oxidative response includes the induction of genes involved in virulence, DNA(More)
BACKGROUND Pseudomonas aeruginosa, a pathogen infecting those with cystic fibrosis, encounters toxicity from phagocyte-derived reactive oxidants including hydrogen peroxide during active infection. P. aeruginosa responds with adaptive and protective strategies against these toxic species to effectively infect humans. Despite advances in our understanding of(More)
Quorum sensing (QS) is an important determinant of bacterial phenotype. Many cell functions are regulated by intricate and multimodal QS signal transduction processes. The LuxS/AI-2 QS system is highly conserved among Eubacteria and AI-2 is reported as a 'universal' signal molecule. To understand the hierarchical organization of AI-2 circuitry, a(More)
We examined the assembly of the amine-rich polysaccharide chitosan from solution onto electrode surfaces as a result of voltage bias on the electrode. Chitosan is positively charged and water soluble under mildly acidic conditions and is uncharged and insoluble under basic conditions. We observed that chitosan is deposited from acidic solution onto the(More)
The patterning of nanoparticles represents a significant obstacle in the assembly of nanoscale materials and devices. In this report, cysteine residues were genetically engineered onto the virion surface of tobacco mosaic virus (TMV), providing attachment sites for fluorescent markers. To pattern these viruses, labeled virions were partially disassembled to(More)
We report a biofunctionalization strategy for the assembly of catalytically active enzymes within a completely packaged bioMEMS device, through the programmed generation of electrical signals at spatially and temporally defined sites. The enzyme of a bacterial metabolic pathway, S-adenosylhomocysteine nucleosidase (Pfs), is genetically fused with a(More)
We constructed and characterized three stress probe plasmids which utilize a green fluorescent protein as a noninvasive reporter in order to elucidate Escherichia coli cellular stress responses in quiescent or resting cells. Cellular stress levels were easily detected by fusing three heat shock stress protein promoter elements, those of the heat shock(More)
Plasmids containing an antisense fragment of the sigma(32) gene were constructed and introduced into Escherichia coli cells. Downregulation of the sigma(32)-mediated stress response was evaluated under heat shock and ethanol stress and during the production of organophosphorus hydrolase (OPH). Northern blot analyses revealed that sigma(32) sense mRNA was(More)