William D. Roof

Learn More
Fifteen-fold overexpression of phosphoenolpyruvate synthase (Pps) (EC 2.7.9.2) in Escherichia coli stimulated oxygen consumption in glucose minimal medium. A further increase in Pps overexpression to 30-fold stimulated glucose consumption by approximately 2-fold and resulted in an increased excretion of pyruvate and acetate. Insertion of two codons at the(More)
Protein E, a 91-residue membrane protein of phiX174, causes lysis of the host in a growth-dependent manner reminiscent of cell wall antibiotics, suggesting E acts by inhibiting peptidoglycan synthesis. In a search for the cellular target of E, we previously have isolated recessive mutations in the host gene slyD (sensitivity to lysis) that block the lytic(More)
Recessive mutations in the slyD gene were isolated by selecting for survival after induction of the cloned lysis gene E of bacteriophage phi X174 (Maratea, D., Young, K., and Young, R. (1985) Gene (Amst.) 40, 39-46). The slyD1 mutation, transduced into the normal phi X174 host, Escherichia coli C, confers an absolute block on the plaque-forming ability of(More)
slyD encodes a 196 amino acid polypeptide that is a member of the FKBP family of cis-trans peptidyl-prolyl isomerases (PPlases). slyD mutations affect plaque formation by the phage phiX174 by blocking the action of the phage lysis protein E. Here we describe the selection of a set of spontaneous slyD mutations conferring resistance to the expression of gene(More)
It is well-known that Escherichia coli grows more slowly on gluconeogenic carbon sources than on glucose. This phenomenon has been attributed to either energy or monomer limitation. To investigate this problem further, we varied the expression levels of pck, encoding phosphoenolpyruvate carboxykinase (Pck), and pps, encoding phosphoenolpyruvate synthase(More)
Most bacteriophages abruptly terminate their vegetative cycle by causing lysis of the host cell. The ssDNA phage phi X174 uses a single lysis gene, E, encoding a 91-amino-acid membrane protein that causes lysis of Escherichia coli by inhibiting MraY, a conserved enzyme of murein biosynthesis. Recessive mutations in the host gene slyD (sensitivity to lysis)(More)
1. The two polypeptide chains that comprise aspartate carbamoyltransferase in Escherichia coli are encoded by adjacent cistrons expressed in the order, promoter-leader-catalytic cistron-regulatory cistron (p-leader-pyrBI). These two cistrons and their single control region have been cloned as a 2,800 base pair (bp) fragment (The minimal coding requirement(More)
Plasmids have an important role in the pathogenicity of certain bacterial species, and Escherichia coli provides the most complete example of the relationship involved. Enterotoxigenic strains of E. coli, in addition to producing heat-stable and/or heat-labile enterotoxins, may also produce a haemolysin and fimbriate cell surface antigens which facilitate(More)
Hybrid lambda phages which have the E lysis gene of the bacteriophage phi X174 in cis to defective nonsense and deletion alleles of the normal lambda lysis genes S and R have been constructed and shown to be fully competent for plaque-forming ability, which demonstrates that the single-gene, lysozyme-independent lysis system of phi X174 and related phages(More)