William D. Phillips

Learn More
Ultracold atoms trapped by light offer robust quantum coherence and controllability, providing an attractive system for quantum information processing and for the simulation of complex problems in condensed matter physics. Many quantum information processing schemes require the manipulation and deterministic entanglement of individual qubits; this would(More)
We present experimental results on a Bose gas in a quasi-2D geometry near the Berezinskii, Kosterlitz, and Thouless (BKT) transition temperature. By measuring the density profile after time of flight and the coherence length, we identify different states of the gas. We observe that the gas develops a bimodal distribution without long range order. In this(More)
We have observed well-defined phase slips between quantized persistent current states around a toroidal atomic (23Na) Bose-Einstein condensate. These phase slips are induced by a weak link (a localized region of reduced superfluid density) rotated slowly around the ring. This is analogous to the behavior of a superconducting loop with a weak link in the(More)
Atomtronics is an emerging interdisciplinary field that seeks to develop new functional methods by creating devices and circuits where ultracold atoms, often superfluids, have a role analogous to that of electrons in electronics. Hysteresis is widely used in electronic circuits-it is routinely observed in superconducting circuits and is essential in(More)
One of the essential features of a quantum computer is a quantum 'register' of well-characterized qubits. Neutral atoms in optical lattices are a natural candidate for such a register. We have demonstrated a patterned-loading technique that can be used to load atoms into large arrays of tightly confined but optically resolvable lattice sites. We have also(More)
We have created a long-lived (≈40 s) persistent current in a toroidal Bose-Einstein condensate held in an all-optical trap. A repulsive optical barrier across one side of the torus creates a tunable weak link in the condensate circuit, which can affect the current around the loop. Superflow stops abruptly at a barrier strength such that the local flow(More)
We demonstrate the coherent transfer of the orbital angular momentum of a photon to an atom in quantized units of variant Planck's over 2pi, using a 2-photon stimulated Raman process with Laguerre-Gaussian beams to generate an atomic vortex state in a Bose-Einstein condensate of sodium atoms. We show that the process is coherent by creating superpositions(More)
Cold atoms in periodic potentials are versatile quantum systems for implementing simple models prevalent in condensed matter theory. Here we realize the 2D Bose-Hubbard model by loading a Bose-Einstein condensate into an optical lattice, and study the resulting Mott insulator. The measured momentum distributions agree quantitatively with theory (no(More)
We describe the controlled loading and measurement of number-squeezed states and Poisson states of atoms in individual sites of a double well optical lattice. These states are input to an atom interferometer that is realized by symmetrically splitting individual lattice sites into double wells, allowing atoms in individual sites to evolve independently. The(More)