Learn More
Oestrogen produces diverse biological effects through binding to the oestrogen receptor (ER). The ER is a steroid hormone nuclear receptor, which, when bound to oestrogen, modulates the transcriptional activity of target genes. Controversy exists, however, concerning whether ER has a role outside the nucleus, particularly in mediating the cardiovascular(More)
Retinoic acid, a developmental signal implicated in the formation of the neural axis, is present at high levels in the early embryonic trunk region, where it is synthesized by a novel dehydrogenase. Here we show that the same enzyme is inducible by retinoic acid in P19 teratocarcinoma cells, and we report the cloning from P19 cells of a cDNA encoding a(More)
Three cellular homologs of the v-erbA oncogene were previously identified in the rat; two of them encode high affinity receptors for the thyroid hormone triiodothyronine (T3). A rat complementary DNA clone encoding a T3 receptor form of the ErbA protein, called r-ErbA beta-2, was isolated. The r-ErbA beta-2 protein differs at its amino terminus from the(More)
In 1948, Wolff and Chaikoff reported that organic binding of iodide in the thyroid was decreased when plasma iodide levels were elevated (acute Wolff-Chaikoff effect), and that adaptation or escape from the acute effect occurred in approximately 2 days, in the presence of continued high plasma iodide concentrations. We later demonstrated that the escape is(More)
The orphan nuclear receptor, steroidogenic factor-1 (SF-1), is expressed in the pituitary and in the gonadotrope precursor cell line, alphaT3-1, where it is believed to enhance expression of the common gonadotropin alpha-subunit gene through transactivation of the gonadotrope-specific element (GSE). Sequence analysis of the rat luteinizing hormone(More)
OBJECTIVE The acute decrease in iodide organification in the thyroid in response to excess iodide is termed the acute Wolff-Chaikoff effect and normal organification resumes in spite of continued high plasma iodide concentrations (escape from the acute Wolff-Chaikoff effect). We have recently reported that large doses of iodide given to rats chronically(More)
Thyroid hormones suppress the synthesis and release of thyrotropin from thyrotropes in the anterior pituitary gland, a feature that is critical in the classic negative-feedback loop of the pituitary-thyroid endocrine axis. The major effect of thyroid hormones in this system is exerted at the transcriptional level. The molecular mechanisms by which there is(More)
Thyroid hormone (TH) plays a crucial role in brain development. Developing rodent cerebellum might be an excellent model for studying the molecular mechanisms of TH action in the brain because perinatal hypothyroidism greatly affects its ontogeny. Although the TH-regulated genes that play crucial roles in cerebellar development have not yet been fully(More)
Galanin is a peptide widely distributed throughout vertebrate central and peripheral nervous systems. Although its precise physiologic role is unknown, it can stimulate the pituitary secretion of prolactin and growth hormone. We examined the control of rat galanin (rGal) gene expression in the anterior pituitary using RNA blot and in situ hybridization(More)