William Canfield

Learn More
The common core 1 O-glycan structure Galbeta1--> 3GalNAc-R is the precursor for many extended mucin-type O-glycan structures in animal cell surface and secreted glycoproteins. Core 1 is synthesized by the transfer of Gal from UDP-Gal to GalNAcalpha1-R by core 1 beta3-galactosyltransferase (core 1 beta3-Gal-T). Amino acid sequences from purified rat core 1(More)
P-selectin glycoprotein ligand-1 (PSGL-1) is a dimeric membrane mucin on leukocytes that binds selectins. The molecular features of PSGL-1 that determine this high affinity binding are unclear. Here we demonstrate the in vitro synthesis of a novel glycosulfopeptide (GSP-6) modeled after the extreme N terminus of PSGL-1, which has been predicted to be(More)
The assessment of iron status for hemodialysis patients has been hindered by the inaccuracy of commonly used diagnostic tests. A novel assay, the reticulocyte hemoglobin content (CHr), has recently been found to sensitively detect functional iron deficiency among nonuremic patients treated with recombinant erythropoietin (rHuEPO). The purpose of this study(More)
The O-linked oligosaccharides (O-glycans) in mammalian glycoproteins are classified according to their core structures. Among the most common is the core 1 disaccharide structure consisting of Galbeta1-->3GalNAcalpha1-->Ser/Thr, which is also the precursor for many extended O-glycan structures. The key enzyme for biosynthesis of core 1 O-glycan from the(More)
The cytoplasmic domains of many membrane proteins have short sequences, usually including a tyrosine or a di-leucine, that function as sorting signals. P-selectin is an adhesion receptor for leukocytes that is expressed on activated platelets and endothelial cells. Its 35-residue cytoplasmic domain contains signals for sorting into regulated secretory(More)
The signal for rapid internalization of the mannose 6-phosphate/insulin-like growth factor II receptor has been localized to the sequence Tyr-Lys-Tyr-Ser-Lys-Val in positions 24-29 of its 163-residue cytoplasmic tail. Most of the activity of this signal is mediated by the carboxyl 4 amino acids, especially Tyr26 and Val29 (Canfield, W. M., Johnson, K. F.,(More)
Mucolipidosis II (MLII; I-cell disease) and mucolipidosis IIIA (MLIIIA; classical pseudo-Hurler polydystrophy) are diseases in which the activity of the uridine diphosphate (UDP)-N-acetylglucosamine:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (GlcNAc-phosphotransferase) is absent or reduced, respectively. In the absence of mannose(More)
Mucolipidosis IIIC, or variant pseudo-Hurler polydystrophy, is an autosomal recessive disease of lysosomal hydrolase trafficking. Unlike the related diseases, mucolipidosis II and IIIA, the enzyme affected in mucolipidosis IIIC (N-Acetylglucosamine-1-phosphotransferase [GlcNAc-phosphotransferase]) retains full transferase activity on synthetic substrates(More)
The kinetic properties of UDP-N-acetylglucosamine:lysosomal-enzyme N-acetylglucosamine-1-phosphotransferase (GlcNAc-phosphotransferase) purified to homogeneity from lactating bovine mammary gland have been investigated. GlcNAc-phosphotransferase transferred GlcNAc 1-phosphate from UDP-GlcNAc to the synthetic acceptor alpha-methylmannoside, generating(More)
Lysosomal enzymes are targeted to the lysosome through binding to mannose 6-phosphate receptors because their glycans are modified with mannose 6-phosphate. This modification is catalyzed by UDP-N-acetylglucosamine:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (GlcNAc-phosphotransferase). Bovine GlcNAc-phosphotransferase was isolated using(More)