Learn More
A one-step, corrosion-assisted reaction was developed to synthesize copper sulfide (CuS) from elemental copper and sulfur in water at 60 C. The as-prepared polycrystalline CuS consists of polyhedral-shaped 2e3 mm crystallites. CuS forms by the oxidation of copper metal in the presence of sulfur, whereas in the presence of water, a continuous solid-state(More)
The syntheses of copper and silver delafossite-type oxides from their constituent binary metal oxides, oxide hydroxides and hydroxides, by low temperature (<210 °C) and low pressure (<20 atm) hydrothermal reactions are described. Particular emphasis is placed on how the acid-base character of a constituent oxide determines its solubility and therefore(More)
A family of quaternary (or pseudoquaternary) antimonides Nb4Pd0.5ZSb2 (Z = Cr, Fe, Co, Ni, Si) containing up to three transition metals in an ordered arrangement has been prepared by reactions of the elements. These antimonides are isostructural, crystallizing as substitutional variants of the W5Si3-type structure (tetragonal, space group -I4/mcm, Z = 4)(More)
A single-step, low-temperature (<210 degrees C) and -pressure (<20 atm) hydrothermal method has been developed to synthesize a series of silver delafossites, AgBO2 (B = Al, Ga, Sc, and In). Experimental and computational studies were performed to understand the optical and electric properties of these silver delafossites, including the first in-depth study(More)
BiCuOS, which is isostructural to the layered rare-earth oxysulfides LnCuOS (Ln = La-Eu), was synthesized by a single-step hydrothermal reaction at low temperature (250 degrees C) and pressure (<20 atm). Particular emphasis is placed on how the selection of the proper reaction conditions, such as temperature and pH, achieves a mutual high solubility of the(More)
Phase-pure BiCuOSe, which is isostructural to the layered p-type transparent conductor LaCuOS, has been synthesized in high yield by a single-step hydrothermal reaction at low temperature (250 degrees C) and pressure (<20 atm). A moderate reaction temperature of 250 degrees C was sufficiently high to solubilize both Bi2O3 and Cu2O and stabilize monovalent(More)
Owing to high carrier mobilities, good environmental/thermal stability, excellent optical transparency, and compatibility with solution processing, thin-film transistors (TFTs) based on amorphous metal oxide semiconductors (AOSs) are promising alternatives to those based on amorphous silicon (a-Si:H) and low-temperature (<600 °C) poly-silicon (LTPS).(More)
  • 1