William C. Barber

Learn More
The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient(More)
This study was a retrospective single-institutional study approved by the Committee on Human Research and was HIPAA compliant. A waiver for informed consent was granted. The purpose of the study was to evaluate the effect of four peak voltage settings on the in vitro conspicuity of gallstones in an anthropomorphic phantom at computed tomography (CT). An(More)
Dual-modality imaging is an in vivo diagnostic technique that obtains structural and functional information directly from patient studies in a way that cannot be achieved with separate imaging systems alone. Dual-modality imaging systems are configured by combining computed tomography (CT) with radionuclide imaging (using positron emission tomography (PET)(More)
Single photon emission computed tomography (SPECT) is an important technology for molecular imaging studies of small animals. In this arena, there is an increasing demand for high performance imaging systems that offer improved spatial resolution and detection efficiency. We have designed a multipinhole small animal imaging system based on position(More)
Dual-modality imaging is a technique in which computed tomography (CT) or magnetic resonance imaging is combined with positron emission tomography or single-photon emission CT to acquire structural and functional images with an integated system. The data are acquired in a single procedure; the patient remains on the scanner table while undergoing both x-ray(More)
In this work, a first-of-its-kind fully integrated tri-modality system that combines fluorescence, diffuse optical and x-ray tomography (FT/DOT/XCT) into the same setting is presented. The purpose of this system is to perform quantitative fluorescence tomography using multi-modality imaging approach. XCT anatomical information is used as structural priori(More)
PURPOSE Energy discriminating, photon-counting detectors (PCDs) are an emerging technology for computed tomography (CT) with various potential benefits for clinical CT. The photon energies measured by PCDs can be distorted due to the interactions of a photon with the detector and the interaction of multiple coincident photons. These effects result in(More)
PURPOSE Recently, photon counting x-ray detectors (PCXDs) with energy discrimination capabilities have been developed for potential use in clinical computed tomography (CT) scanners. These PCXDs have great potential to improve the quality of CT images due to the absence of electronic noise and weights applied to the counts and the additional spectral(More)
PURPOSE Recently, novel CdTe photon counting x-ray detectors (PCXDs) with energy discrimination capabilities have been developed. When such detectors are operated under a high x-ray flux, however, coincident pulses distort the recorded energy spectrum. These distortions are called pulse pileup effects. It is essential to compensate for these effects on the(More)
Initial results from a novel dual modality preclinical imager which combines non-contact fluorescence tomography (FT) and x-ray computed tomography (CT) for preclinical functional and anatomical in vivo imaging are presented. The anatomical data from CT provides a priori information to the FT reconstruction to create overlaid functional and anatomical(More)