Learn More
Endothelial cells, which form the inner cellular lining of blood vessels and lymphatics, display remarkable heterogeneity in structure and function. This is the first of a 2-part review focused on phenotypic heterogeneity of blood vessel endothelium. This review provides an historical perspective of our understanding of endothelial heterogeneity, discusses(More)
Endothelial cells, which form the inner cellular lining of blood vessels and lymphatics, display remarkable heterogeneity in structure and function. This is the second of a 2-part review on the phenotypic heterogeneity of blood vessel endothelial cells. The first part discusses the scope, the underlying mechanisms, and the diagnostic and therapeutic(More)
Severe sepsis, defined as sepsis with acute organ dysfunction, is associated with high morbidity and mortality rates. The development of novel therapies for sepsis is critically dependent on an understanding of the basic mechanisms of the disease. The pathophysiology of severe sepsis involves a highly complex, integrated response that includes the(More)
The incidence of many cancer types is significantly reduced in individuals with Down's syndrome, and it is thought that this broad cancer protection is conferred by the increased expression of one or more of the 231 supernumerary genes on the extra copy of chromosome 21. One such gene is Down's syndrome candidate region-1 (DSCR1, also known as RCAN1), which(More)
The endothelium is morphologically and functionally adapted to meet the unique demands of the underlying tissue. At the present time, little is known about the molecular basis of endothelial cell diversity. As one approach to this problem, we have chosen to study the mechanisms that govern differential expression of the endothelial cell-restricted von(More)
  • W C Aird
  • 2005
The endothelium is a highly metabolically active organ that is involved in many physiological processes, including the control of vasomotor tone, barrier function, leukocyte adhesion and trafficking, inflammation, and hemostasis. Endothelial cell phenotypes are differentially regulated in space and time. Endothelial cell heterogeneity has important(More)
The endothelium, which forms the inner lining of blood vessels and lymphatics, participates in many physiological functions. Endothelial cell phenotypes vary in structure and function, in space and time, and in health and disease. The goal of this review is to underscore the importance of phenotypic heterogeneity as a core property of the endothelium.
Vascular endothelial growth factor (VEGF) is a potent vascular endothelial cell-specific mitogen that modulates endothelial cell function. In the present study, we show that VEGF induces manganese-superoxide dismutase (MnSOD) mRNA and protein in human coronary artery endothelial cells (HCAEC) and pulmonary artery endothelial cells. VEGF-mediated induction(More)
Endothelial cells (ECs) display phenotypic heterogeneity. Endothelial cell heterogeneity is mediated, at least in part, by site-specific and time-dependent differences in gene transcription. The goal of this review is to provide a conceptual framework for approaching EC gene regulation in the adult vasculature. We summarize data from cell culture studies(More)
Sepsis, the systemic inflammatory response to infection, is a leading cause of morbidity and mortality. The mechanisms of sepsis pathophysiology remain obscure but are likely to involve a complex interplay between mediators of the inflammatory and coagulation pathways. An improved understanding of these mechanisms should provide an important foundation for(More)