Learn More
The labile iron pool (LIP) of cells constitutes a cytosolic fraction of iron which is accessible to permeant chelators and contains the cells' metabolically and catalytically reactive iron. LIP is maintained by a balanced movement of iron from extra- and intracellular sources. We describe here an approach for tracing LIP levels in living cells based on the(More)
Labile iron in hemosiderotic plasma and tissue are sources of iron toxicity. We compared the iron chelators deferoxamine, deferiprone, and deferasirox as scavengers of labile iron in plasma and cardiomyocytes at therapeutic concentrations. This comprised chelation of labile plasma iron (LPI) in samples from thalassemia patients; extraction of total cellular(More)
The release of iron from transferrin (Tf) in the acidic milieu of endosomes and its translocation into the cytosol are integral steps in the process of iron acquisition via receptor-mediated endocytosis (RME). The translocated metal is thought to enter a low molecular weight cytoplasmic pool, presumed to contain the form of iron which is apparently sensed(More)
A variety of biochemical, pharmacological, and toxicological properties have been attributed to labile forms of iron that are associated with cells or with biological fluids. Unlike the major fraction of bioiron which is protein bound, the labile bioiron is chelatable and therefore amenable for detection by metal-sensing devices that are coupled to(More)
Plasma non-transferrin-bound-iron (NTBI) is believed to be responsible for catalyzing the formation of reactive radicals in the circulation of iron overloaded subjects, resulting in accumulation of oxidation products. We assessed the redox active component of NTBI in the plasma of healthy and beta-thalassemic patients. The labile plasma iron (LPI) was(More)
The concept of non-transferrin bound iron (NTBI) was introduced 22 years ago by Hershko et al. (Brit. J. Haematol. 40 (1978) 255). It stemmed from a suspicion that, in iron overloaded patients, the large amounts of excess iron released into the circulation are likely to exceed the serum transferrin (Tf) iron-binding capacity (TIBC), leading to the(More)
Labile plasma iron (LPI) represents a component of non-transferrin-bound iron (NTBI) that is both redox-active and chelatable, capable of permeating into organs and inducing tissue iron overload. It appears in various types of hemosiderosis (transfusional and non-transfusional) and in other iron-overload conditions. Sustained levels of LPI could over time(More)
The labile iron pool (LIP) of animal cells has been implicated in cell iron regulation and as a key component of the oxidative-stress response. A major mechanism commonly implied in the downregulation of LIP has been the induced expression of ferritin (FT), particularly the heavy subunits (H-FT) that display ferroxidase activity. The effects of H-FT on LIP(More)
Ubiquitin accumulation in amyloid plaques is a pathological marker observed in the vast majority of neurodegenerative diseases, yet ubiquitin function in these inclusions is controversial. It has been suggested that ubiquitylated proteins are directed to inclusion bodies under stress conditions, when both chaperone-mediated refolding and proteasomal(More)
Progressive iron overload is the most salient and ultimately fatal complication of beta-thalassemia. However, little is known about the relationship among ineffective erythropoiesis (IE), the role of iron-regulatory genes, and tissue iron distribution in beta-thalassemia. We analyzed tissue iron content and iron-regulatory gene expression in the liver,(More)