William B. Sherwin

Learn More
Socially learned behaviours leading to genetic population structure have rarely been described outside humans. Here, we provide evidence of fine-scale genetic structure that has probably arisen based on socially transmitted behaviours in bottlenose dolphins (Tursiops sp.) in western Shark Bay, Western Australia. We argue that vertical social transmission in(More)
We demonstrate that koala (Phascolarctos cinereus) MHC class I constitutes a variable multigene family. A total of nine partial exon 2 and 3 major histocompatibility complex (MHC) class I sequences are presented, including six sequences from at least three loci from one koala. Variation was detected by examination of sequences from a number of individuals(More)
This article highlights advantages of entropy-based genetic diversity measures, at levels from gene expression to landscapes. Shannon's entropy-based diversity is the standard for ecological communities. The exponentials of Shannon's and the related " mutual information " excel in their ability to express diversity intuitively, and provide a generalised(More)
Terrestrial mammals with differentiated social relationships live in 'semi-closed groups' that occasionally accept new members emigrating from other groups. Bottlenose dolphins (Tursiops sp.) in Shark Bay, Western Australia, exhibit a fission-fusion grouping pattern with strongly differentiated relationships, including nested male alliances. Previous(More)
Male bottlenose dolphins in Shark Bay, Western Australia form two levels of alliances; two to three males cooperate to herd individual females and teams of greater than three males compete with other groups for females. Previous observation suggested two alliance tactics: small four to six member teams of relatives that formed stable pairs or trios and(More)
Some introduced populations thrive and evolve despite the presumed loss of diversity at introduction. We aimed to quantify the amount of genetic diversity retained at introduction in species that have shown evidence of adaptation to their introduced environments. Samples were taken from native and introduced ranges of Arctotheca populifolia and Petrorhagia(More)
Among Australian endemic tephritid fruit flies, the sibling species Bactrocera tryoni and Bactrocera neohumeralis have been serious horticultural pests since the introduction of horticulture in the nineteenth century. More recently, Bactrocera jarvisi has also been declared a pest in northern Australia. After several decades of genetic research there is now(More)
The effective population size (N e ) is a key parameter in evolutionary and population genetics. Single-sample N e estimation provides an alternative to traditional approaches requiring two or more samples. Single-sample methods assume that the study population has no genetic sub-structure, which is unlikely to be true in wild populations. Here we(More)
Kinship analyses are important pillars of ecological and conservation genetic studies with potentially far-reaching implications. There is a need for power analyses that address a range of possible relationships. Nevertheless, such analyses are rarely applied, and studies that use genetic-data-based-kinship inference often ignore the influence of intrinsic(More)
The tephritid fruit flies include a number of economically important pests of horticulture, with a large accumulated body of research on their biology and control. Amongst the Tephritidae, the genus Bactrocera, containing over 400 species, presents various species groups of potential utility for genetic studies of speciation, behaviour or pest control. In(More)