William B. Sherwin

Learn More
This article highlights advantages of entropy-based genetic diversity measures, at levels from gene expression to landscapes. Shannon's entropy-based diversity is the standard for ecological communities. The exponentials of Shannon's and the related " mutual information " excel in their ability to express diversity intuitively, and provide a generalised(More)
Among Australian endemic tephritid fruit flies, the sibling species Bactrocera tryoni and Bactrocera neohumeralis have been serious horticultural pests since the introduction of horticulture in the nineteenth century. More recently, Bactrocera jarvisi has also been declared a pest in northern Australia. After several decades of genetic research there is now(More)
Some introduced populations thrive and evolve despite the presumed loss of diversity at introduction. We aimed to quantify the amount of genetic diversity retained at introduction in species that have shown evidence of adaptation to their introduced environments. Samples were taken from native and introduced ranges of Arctotheca populifolia and Petrorhagia(More)
The effective population size (N e ) is a key parameter in evolutionary and population genetics. Single-sample N e estimation provides an alternative to traditional approaches requiring two or more samples. Single-sample methods assume that the study population has no genetic sub-structure, which is unlikely to be true in wild populations. Here we(More)
Kinship analyses are important pillars of ecological and conservation genetic studies with potentially far-reaching implications. There is a need for power analyses that address a range of possible relationships. Nevertheless, such analyses are rarely applied, and studies that use genetic-data-based-kinship inference often ignore the influence of intrinsic(More)
The tephritid fruit flies include a number of economically important pests of horticulture, with a large accumulated body of research on their biology and control. Amongst the Tephritidae, the genus Bactrocera, containing over 400 species, presents various species groups of potential utility for genetic studies of speciation, behaviour or pest control. In(More)
Speciation is central to evolutionary biology, and to elucidate it, we need to catch the early genetic changes that set nascent taxa on their path to species status (Via 2009). That challenge is difficult, of course, for two chief reasons: (i) serendipity is required to catch speciation in the act; and (ii) after a short time span with lingering gene flow,(More)
Shannon entropy H and related measures are increasingly used in molecular ecology and population genetics because (1) unlike measures based on heterozygosity or allele number, these measures weigh alleles in proportion to their population fraction, thus capturing a previously-ignored aspect of allele frequency distributions that may be important in many(More)
Quantifying the spatial scale of population connectivity is important for understanding the evolutionary potential of ecologically divergent populations and for designing conservation strategies to preserve those populations. For marine organisms like fish, the spatial scale of connectivity is generally set by a pelagic larval phase. This has complicated(More)
Major prehistoric forces, such as the climatic shifts of the Pleistocene, can remain visible in a species' population genetics. Inference of refuges via genetic tools is useful for conservation management as it can identify populations whose preservation may help retain a species' adaptive potential. Such investigation is needed for Australia's southern(More)