William B. Anderson

Learn More
A watershed-scale fate and transport model has been developed for Escherichia coli and several waterborne pathogens: Cryptosporidiumspp., Giardiaspp., Campylobacter spp, and E. coli O157:H7. The objectives were to determine the primary sources of pathogenic contamination in a watershed used for drinking water supply and to gain a greater understanding of(More)
This article reviews perfluoroalkyl and polyfluoroalkyl substance (PFAS) characteristics, their occurrence in surface water, and their fate in drinking water treatment processes. PFASs have been detected globally in the aquatic environment including drinking water at trace concentrations and due, in part, to their persistence in human tissue some are being(More)
In the past decade efforts have been made to reduce the formation of harmful disinfection byproducts during the treatment and distribution of drinking water. This has been accomplished in part by the introduction of processes that involve the deliberate encouragement of indigenous biofilm growth in filters. In a controlled environment, such as a filter,(More)
The continuously changing drivers of the water treatment industry, embodied by rigorous environmental and health regulations and the challenge of emerging contaminants, necessitates the development of decision support systems for the selection of appropriate treatment trains. This paper explores a systematic approach to developing decision support systems,(More)
Water samples were collected from 36 locations within the Grand River Watershed, in Southwestern Ontario, Canada from July 2002 to December 2003 and were analyzed for total coliforms, fecal coliforms, Escherichia coli, Escherichia coli O157:H7, and thermophilic Campylobacter spp. A subset of samples was also analyzed for Cryptosporidium spp., Giardia spp.,(More)
226Ra2+ is removed from uranium mine effluents by coprecipitation with BaSO4. (Ba,Ra)SO4 sludge samples from two Canadian mine sites were found to contain active heterotrophic populations of aerobic, anaerobic, denitrifying, and sulfate-reducing bacteria. Under laboratory conditions, sulfate reduction occurred in batch cultures when carbon sources such as(More)
Exposure to endotoxins in treated drinking water can occur through ingestion, dermal abrasions, inhalation of water vapor, intravenous injection or during dialysis. While the risks associated with endotoxin ingestion and entry through dermal abrasions are not well quantified, adverse effects of intravenous injection and dialysis are well known and some(More)
Deionized water was spiked with various concentrations of endotoxin and exposed to UV irradiation from medium-pressure UV lamps to assess endotoxin inactivation. It was found that endotoxin inactivation was proportional to the UV dose under the conditions examined. The inactivation rate was determined to be approximately 0.55 endotoxin unit/ml per mJ/cm(2)(More)