Learn More
Structures of DNA polymerase (pol) beta bound to single-nucleotide gapped DNA had revealed that the lyase and pol domains form a "doughnut-shaped" structure altering the dNTP binding pocket in a fashion that is not observed when bound to non-gapped DNA. We have investigated dNTP binding to pol beta-DNA complexes employing steady-state and pre-steady-state(More)
To dissect the effects of the nucleotide-binding and catalytic metal ions on DNA polymerase mechanisms for DNA repair and synthesis, aside from the chemical reaction, we investigate their roles in the conformational transitions between closed and open states and assembly/disassembly of the active site of polymerase beta/DNA complexes before and after the(More)
DNA polymerase beta (pol beta) and flap endonuclease 1 (FEN1) are key players in pol beta-mediated long-patch base excision repair (LP-BER). It was proposed that this type of LP-BER is accomplished through FEN1 removal of a 2- to 11-nucleotide flap created by pol beta strand displacement DNA synthesis. To understand how these enzymes might cooperate during(More)
The molecular details of the nucleotidyl transferase reaction have remained speculative, as strategies to trap catalytic intermediates for structure determination utilize substrates lacking the primer terminus 3'-OH and catalytic Mg2+, resulting in an incomplete and distorted active site geometry. Since the geometric arrangement of these essential atoms(More)
In the crystal structure of a substrate complex, the side chains of residues Asn279, Tyr271, and Arg283 of DNA polymerase beta are within hydrogen bonding distance to the bases of the incoming deoxynucleoside 5'-triphosphate (dNTP), the terminal primer nucleotide, and the templating nucleotide, respectively (Pelletier, H., Sawaya, M. R., Kumar, A., Wilson,(More)
The mammalian family X DNA polymerases (DNA polymerases beta, lambda, mu, and TdT) contribute to base excision repair and double-strand break repair by virtue of their ability to fill short gaps in DNA. Structural information now exists for all four of these enzymes, making this the first mammalian polymerase family whose structural portrait is complete.(More)
We report the crystallographic structures of DNA polymerase beta with dG-dAMPCPP and dC-dAMPCPP mismatches in the active site. These premutagenic structures were obtained with a nonhydrolyzable incoming nucleotide analog, dAMPCPP, and Mn(2+). Substituting Mn(2+) for Mg(2+) significantly decreases the fidelity of DNA synthesis. The structures reveal that the(More)
DNA polymerases generally select the correct nucleotide from a pool of structurally similar molecules to preserve Watson-Crick base-pairing rules. We report the structure of DNA polymerase beta with DNA mismatches situated in the polymerase active site. This was achieved by using nicked product DNA that traps the mispair (template-primer, A-C or T-C) in the(More)
X-ray crystallographic structures of human DNA polymerase beta with nonhydrolyzable analogs containing all atoms in the active site required for catalysis provide a secure starting point for a theoretical analysis (quantum mechanics/molecular mechanics) of the mechanism of chemistry without biasing of modeling assumptions as required in previous studies.(More)
The individual steps in single-nucleotide base excision repair (SN-BER) are coordinated to enable efficient repair without accumulation of cytotoxic DNA intermediates. The DNA transactions and various proteins involved in SN-BER of abasic sites are well known in mammalian systems. Yet, despite a wealth of information on SN-BER, the mechanism of step-by-step(More)