William A. Bassett

Learn More
An x-ray diffraction study of iron under pressure has shown that alpha-iron (body-centered cubic) transforms to hexagonal-close-packing (designated epsilon-iron) at 130 kb, room temperature. The volume change for the transformation is -0.20 +/- 0.03 cm2/ mole. The slope for the gamma-epsilon phase boundary has been calculated to be 2 +/- 1 degrees C/kb. The(More)
Two-dimensional single-crystal PbS nanosheets were synthesized by deviatoric stress-driven orientation and attachment of nanoparticles (NPs). In situ small- and wide-angle synchrotron X-ray scattering measurements on the same spot of the sample under pressure coupled with transmission electron microscopy enable reconstruction of the nucleation route showing(More)
Assemblies of 3.5 nm PbS nanoparticles (NPs) nucleate in three dominant superlattice polymorphs: amorphous, body-centered-cubic (bcc) and face-centered-cubic (fcc) phase. This superlattice relationship can be controlled by the inter-NP distance without changing the NP size. Upon increase of inter-NP distance, the packing density decreases, and the capping(More)
The year 2008 marked the fiftieth birthday of the diamond anvil cell. Its birth took place when Alvin Van Valkenburg, while working with his colleagues, first realized that he could look right through one of the diamond anvils and see a sample while it was at high pressure. In the following years, these scientists and many others adapted the diamond anvil(More)
The refractive index of H2O ice has been measured to 120 GPa at room temperature using reflectivity methods. The refractive index increases significantly with pressure on initial compression and exhibits small changes with pressure at previously identified phase transitions. Pressure dependencies of the molecular polarizability show changing slopes in(More)
The transition from body-centered cubic to hexagonal close-packed phase in iron has been studied in a diamond anvil cell with synchrotron radiation. The hexagonal close-packed phase, when it first appears, has a ratio of lattice parameters that is significantly larger than normal. This is attributed to a displacive mechanism that causes a distortion of the(More)
Combined small and wide angle synchrotron x-ray scattering (SAXS and WAXS) techniques have been developed for in situ high pressure samples, enabling exploration of the atomic structure and nanoscale superstructure phase relations. These studies can then be used to find connections between nanoparticle surfaces and internal atomic arrangements. We developed(More)
  • W A Bassett
  • 2006
Both synchrotron radiation and deviatoric stress were once considered to be nuisances. Now synchrotron radiation is one of the most important tools available to scientists of all disciplines and deviatoric stress is one of the most useful aspects of x-ray diffraction at extreme conditions. Samples in high-pressure devices are under true hydrostatic pressure(More)