Learn More
[1] Practical experience with the calibration of hydrologic models suggests that any single-objective function, no matter how carefully chosen, is often inadequate to properly measure all of the characteristics of the observed data deemed to be important. One strategy to circumvent this problem is to define several optimization criteria (objective(More)
[1] Hydrologic models use relatively simple mathematical equations to conceptualize and aggregate the complex, spatially distributed, and highly interrelated water, energy, and vegetation processes in a watershed. A consequence of process aggregation is that the model parameters often do not represent directly measurable entities and must therefore be(More)
How flying organisms alter their air speed in response to wind is important in theories of flight energetics. Numerous studies have investigated the relationship between air and wind as a function of ground speed and air speed. This study shows that this approach can lead to erroneous results, due to spurious correlations. An alternative way to analyze air(More)
Richards equation to observations of the measured variables during the experiment. We present a thorough identifiability analysis of the soil hydraulic During the last two decades, a great deal of research parameters in the parametric models of Brooks and Corey (BC; Brooks has been devoted to exploring the applicability and suit-of soil hydraulic(More)
Animal-borne sensors enable researchers to remotely track animals, their physiological state and body movements. Accelerometers, for example, have been used in several studies to measure body movement, posture, and energy expenditure, although predominantly in marine animals. In many studies, behaviour is often inferred from expert interpretation of sensor(More)
Tracking devices and bio-loggers provide crucial information on the ecology and behaviour of birds in their natural environment. An optimal tracking system should be lightweight, measure three-dimensional locations, enable flexible measurement schemes, transmit data remotely and measure environmental variables and biological parameters of the individual.(More)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Optimality models are frequently used in studies of long distance bird migration to help understand and predict migration routes, stopover strategies and fuelling behaviour in a spatially varying environment. These models typically evaluate bird behaviour by focusing on a single optimization(More)
Atmospheric dynamics strongly influence the migration of flying organisms. They affect, among others, the onset, duration and cost of migration, migratory routes, stop-over decisions, and flight speeds en-route. Animals move through a heterogeneous environment and have to react to atmospheric dynamics at different spatial and temporal scales. Integrating(More)
Animal movements in air and water can be strongly affected by experienced flow. While various flow-orientation strategies have been proposed and observed, their performance in variable flow conditions remains unclear. We apply control theory to establish a benchmark for time-minimizing (optimal) orientation. We then define optimal orientation for movement(More)
Mineralization rates of non-volatile petroleum hydrocarbons (HCs) in five different oil-contaminated soils with initial HC contents ranging from 0.1 to 13 g kg-1 are estimated as a function of environmental factors. The aim of the study is threefold, (i) to study the relevance of environmental factors that may influence the mineralization rate, (ii) to(More)