Learn More
BACKGROUND An effective vaccine for malaria is urgently needed. Naturally acquired immunity to malaria develops slowly, and induction of protection in humans can be achieved artificially by the inoculation of radiation-attenuated sporozoites by means of more than 1000 infective mosquito bites. METHODS We exposed 15 healthy volunteers--with 10 assigned to(More)
Volunteers immunized under chloroquine chemoprophylaxis with Plasmodium falciparum sporozoites (CPS) develop complete, long-lasting protection against homologous sporozoite challenge. Chloroquine affects neither sporozoites nor liver-stages, but kills only asexual forms in erythrocytes once released from the liver into the circulation. Consequently, CPS(More)
Malaria kills >1 million people each year, in particular in sub-Saharan Africa. Although asexual forms are directly responsible for disease and death, sexual stages account for the transmission of Plasmodium parasites from human to the mosquito vector and therefore the spread of the parasite in the population. Development of a malaria vaccine is urgently(More)
INTRODUCTION In the era of malaria elimination and eradication, drug-based and vaccine-based approaches to reduce malaria transmission are receiving greater attention. Such interventions require assays that reliably measure the transmission of Plasmodium from humans to Anopheles mosquitoes. METHODS WE COMPARED TWO COMMONLY USED MOSQUITO FEEDING ASSAY(More)
BACKGROUND Antibodies, particularly cytophilic IgG subclasses, with specificity for asexual blood stage antigens of Plasmodium falciparum, are thought to play an important role in acquired immunity to malaria. Evaluating such responses in longitudinal sero-epidemiological field studies, allied to increasing knowledge of the immunological mechanisms(More)
Malaria transmission blocking vaccines (TBV) directed against proteins expressed on sexual stages of Plasmodium falciparum in the mosquito midgut are considered an effective means to reduce malaria transmission. Antibodies induced by TBV block sporogonic development in the mosquito, and thus transmission to the next human host. The Pfs25 protein, expressed(More)
Pfs48/45, a member of a Plasmodium-specific protein family, displays conformation-dependent epitopes and is an important target for malaria transmission-blocking (TB) immunity. To design a recombinant Pfs48/45-based TB vaccine, we analyzed the conformational TB epitopes of Pfs48/45. The Pfs48/45 protein was found to consist of a C-terminal six-cysteine(More)
With the aim of developing transmission-blocking vaccines based on the sexual stage-specific surface antigen Pfs48/45 of the human malaria parasite Plasmodium falciparum, the gene encoding Pfs48/45 was incorporated into the genome of a recombinant vaccinia virus. In virus-infected mammalian tissue culture cells, recombinant Pfs48/45 antigen (rPfs48/45) is(More)
A precondition for the development of a transmission blocking vaccine based on the sexual stage-specific surface antigen Pfs48/45 of Plasmodium falciparum is its heterologous synthesis in a native state. Here we describe the production of recombinant Pfs48/45 in Escherichia coli. Two recombinant proteins, of which one is a glutathione-S-transferase fusion(More)
BACKGROUND Man to mosquito transmission of malaria depends on the presence of the sexual stage parasites, gametocytes, that often circulate at low densities. Gametocyte densities below the microscopical threshold of detection may be sufficient to infect mosquitoes but the importance of submicroscopical gametocyte carriage in different transmission settings(More)