Will Anderson

Learn More
The particle size distribution (PSD) of a polydisperse or multimodal system can often be difficult to obtain due to the inherent limitations in established measurement techniques. For this reason, the resolution, accuracy and precision of three new and one established, commercially available and fundamentally different particle size analysis platforms were(More)
The use of a "size-tunable" polyurethane resistive pulse sensor for quantitative sizing of nano- and microparticles is presented. A linear relationship, as first suggested by Maxwell, between particle volume and change in electric resistance across the pore was observed. Particle sizes were quantified for a given size-tunable membrane, by first creating a(More)
BACKGROUND Infantile hemangioma is a vascular tumor and requires treatment in lesions manifested by potentially dangerous symptoms. Several publications have reported that involution of infantile hemangioma could be accelerated by propranolol but have used only invalidated subjective measures of assessment. The authors aimed to objectively validate the(More)
Tunable nanopores fabricated in elastomeric membranes have been used to study the dependence of ionic current blockade rate on the concentration and electrophoretic mobility of particles in aqueous suspensions. A range of nanoparticle sizes, materials and surface functionalities has been tested. Using pressure-driven flow through a pore, the blockade rate(More)
We report precision measurements by Fourier transform spectroscopy of the vacuum wavenumber, line width, and relative signal strength of 928 lines in the Ar I spectrum. Wavelength in air and classification of the transition are supplied for each line. A comparison of our results with other precision measurements illustrates the sensitivity of Ar I(More)
An important aspect of robotic path planning for is ensuring that the vehicle is in the best location to collect the data necessary for the problem at hand. Given that features of interest are dynamic and move with oceanic currents, vehicle speed is an important factor in any planning exercises to ensure vehicles are at the right place at the right time.(More)
Nanopore devices are extremely useful tools for the simple, sensitive, and high-throughput characterization of particles and biomolecules. [ 1 , 2 ] However, the fi xed diameter of conventional pores severely limits the size range of structures that can be effectively analyzed with a given pore. Herein we use a novel resizable elastic nanopore to(More)
Scanning ion occlusion sensing (SIOS), a technique that uses a tunable pore to detect the passage of individual nano-scale objects, is applied here for the rapid, accurate and direct measurement of synthetic and biological nanoparticle concentrations. SIOS is able to characterize smaller particles than other direct count techniques such as flow cytometry or(More)
Exosomes are vesicles which have garnered interest due to their diagnostic and therapeutic potential. Isolation of pure yields of exosomes from complex biological fluids whilst preserving their physical characteristics is critical for downstream applications. In this study, we use 100 nm-liposomes from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and(More)
Since the first reported use of a biological ion channel to detect differences in single stranded genomic base pairs in 1996, a renaissance in nanoscale resistive pulse sensors has ensued. This resurgence of a technique originally outlined and commercialized over fifty years ago has largely been driven by advances in nanoscaled fabrication, and ultimately,(More)