Wiesław Śródka

Learn More
Material properties of cornea and sclera are important for maintaining the shape of the eye and the requisite surface curvatures for optics. They also need to withstand the forces of external and internal musculature and fluctuations in intraocular pressure (IOP). These properties are difficult to measure and variable results have been reported. A(More)
The dynamics of the eyeball, most notably the changes in intraocular pressure, need to be stabilized optically to prevent noticeable changes in image quality. This control depends on the rheological properties of the eyeball coats and how the elasticity of the cornea, sclera, and limbus vary relative to one another. Nonlinear finite element modeling shows(More)
A thesis that linear mechanics does not apply to the analysis of cornea load during Goldmann applanation tonometry measurement and that the concept of surface tension in the lacrimal fluid is an ineffective attempt at circumventing the associated problems is put forward. The fundamental problem emerging during numerically simulated measurement of pressure(More)
PURPOSE The values of the biomechanical human eyeball model parameters reported in the literature are still being disputed. The primary motivation behind this work was to predict the material parameters of the cornea through numerical simulations and to assess the applicability of the ubiquitously accepted law of applanation tonometry - the Imbert-Fick(More)
So far applanation tonometry has not worked out any theoretical basis for correcting the result of intraocular pressure measurement carried out on a cornea with noncalibration dimensions by means of the Goldmann tonometer. All the tables of instrument reading corrections for cornea thickness or cornea curvature radius are based exclusively on measurements.(More)
  • 1