Learn More
The human visual pathways that are specialized for object recognition stretch from lateral occipital cortex (LO) to the ventral surface of the temporal lobe, including the fusiform gyrus. Plasticity in these pathways supports the acquisition of visual expertise, but precisely how training affects the different regions remains unclear. We used functional(More)
Current therapies for glioblastoma (GBM) target bulk tumor through measures such as resection and radiotherapy. However, recent evidence suggests that targeting a subset of tumor cells, so-called cancer stem cells, may be critical for inhibiting tumor growth and relapse. The subventricular zone (SVZ), which lines the ventricles of the brain, is thought to(More)
Bevacizumab is thought to normalize tumor vasculature and restore the blood-brain barrier, decreasing enhancement and peritumoral edema. Conventional measurements of tumor response rely upon dimensions of enhancing tumor. After bevacizumab treatment, glioblastomas are more prone to progress as nonenhancing tumor. The RANO (Response Assessment in(More)
PURPOSE Ensemble segmentation methods combine the segmentation results of individual methods into a final one, with the goal of achieving greater robustness and accuracy. The goal of this study was to develop an ensemble segmentation framework for glioblastoma multiforme tumors on single-channel T1w postcontrast magnetic resonance images. METHODS Three(More)
It is a challenging task to automatically segment glioblastoma multiforme (GBM) brain tumors on T1w post-contrast isotropic MR images. A semi-automated system using fuzzy connectedness has recently been developed for computing the tumor volume that reduces the cost of manual annotation. In this study, we propose a an ensemble method that combines multiple(More)
Although the effects of bevacizumab on magnetic resonance images (MRIs) of recurrent glioblastoma multiforme (GBM) are well documented, to our knowledge, no studies have explicitly quantified the volumetric changes resulting from initial treatment, nor have there been studies examining the ability for volumetric changes in conventional MRI to predict(More)
This study applied the Gaussian Mixture Model (GMM) to tumor apparent diffusion coefficient (ADC) histogram to evaluate glioblastoma multiforme (GBM) tumor treatment response using diffusion weighted (DW) MR images. ADC mapping, calculated from DW images, has been shown to reveal changes in the tumor's microenvironment preceding morphologic tumor changes.(More)
The purpose of the current study was to explore whether brain tumors disrupt the integrity of the default mode network (DMN), a well-characterized resting-state fMRI network. We evaluated whether tumor grade, volume, post-surgical/clinical status, or location decreased the functional connectivity within the DMN in patients with gliomas. Task-based fMRI data(More)
The purpose of this study was to use a retrospective nonlinear distortion correction technique and evaluate the changes in DTI metrics in areas of interest in and around GBM tumors. A total of 24 histologically confirmed GBM patients with pre-operative 20-direction DTI scans were examined. Variability in apparent diffusion coefficient (ADC) and fractional(More)
The purpose of the present study was to present a multi-delay multi-parametric pseudo-continuous arterial spin labeling (pCASL) protocol with background suppressed 3D GRASE (gradient and spin echo) readout for perfusion imaging in acute ischemic stroke. PCASL data at 4 post-labeling delay times (PLD = 1.5, 2, 2.5, 3 s) were acquired within 4.5 min in 24(More)