Wesley H. Anderson

Learn More
Kappa opioid receptors and their endogenous neuropeptide ligand, dynorphin A, are densely localized in limbic and cortical areas comprising the brain reward system, and appear to play a key role in modulating stress and mood. Growing literature indicates that kappa receptor antagonists may be beneficial in the treatment of mood and addictive disorders.(More)
Transmembrane AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor regulatory protein (TARP) γ-8 is an auxiliary protein associated with some AMPA receptors. Most strikingly, AMPA receptors associated with this TARP have a relatively high localization in the hippocampus. TARP γ-8 also modifies the pharmacology and trafficking of AMPA(More)
Scopolamine produces rapid and significant symptom improvement in patients with depression, and most notably in patients who do not respond to current antidepressant treatments. Scopolamine is a nonselective muscarinic acetylcholine receptor antagonist, and it is not known which one or more of the five receptor subtypes in the muscarinic family are(More)
Clinical trials constitute large, complex, and resource intensive activities for pharmaceutical companies. Accurate prediction of patient enrollment would represent a major step forward in optimizing clinical trials. Currently models for patient enrollment that are both accurate and fast are not available. We present a discrete event model of the patient(More)
Conventional antidepressants lack efficacy for many patients (treatment-resistant depression or TRD) and generally take weeks to produce full therapeutic response in others. Emerging data has identified certain drugs such as ketamine as rapidly-acting antidepressants for major depressive disorder and TRD. Scopolamine, a drug used to treat motion sickness(More)
The ability of the N-methyl-d-aspartate receptor antagonist ketamine to alleviate symptoms in patients suffering from treatment-resistant depression (TRD) is well documented. In this paper, we directly compare in vivo biologic responses in rodents elicited by a recently discovered metabotropic glutamate (mGlu) 2/3 receptor antagonist(More)
Allosteric potentiators amplify the sensitivity of physiologic control circuits, a mode of action that could provide therapeutic advantages. This hypothesis was tested with the dopamine D1 receptor potentiator DETQ [2-(2,6-dichlorophenyl)-1-((1S,3R)-3-(hydroxymethyl)-5-(2-hydroxypropan-2-yl)-1-methyl-3,4-dihydroisoquinolin-2(1H)-yl)ethan-1-one]. In human(More)
  • 1