Werner Issao Furuya

Learn More
AIM Leptin, an adipocyte-derived hormone, is suggested to participate in the central control of breathing. We hypothesized that leptin may facilitate ventilatory responses to chemoreflex activation by acting on respiratory nuclei of the ventrolateral medulla. The baseline ventilation and the ventilatory responses to CO2 were evaluated before and after daily(More)
It is well known that breathing introduces rhythmical oscillations in the heart rate and arterial pressure levels. Sympathetic oscillations coupled to the respiratory activity have been suggested as an important homeostatic mechanism optimizing tissue perfusion and blood gas uptake/delivery. This respiratory-sympathetic coupling is strengthened in(More)
The contribution of cholinergic mechanisms of the nucleus of the solitary tract (NTS) to cardiorespiratory control is not completely clear. In the present study, we investigated the involvement of the cholinergic mechanisms in the intermediate NTS (iNTS) and commissural NTS (cNTS) on the control of sympathetic (SNA) and phrenic nerve activity (PNA).(More)
With the global epidemic of obesity, breathing disorders associated with excess body weight have markedly increased. Respiratory dysfunctions caused by obesity were originally attributed to mechanical factors; however, recent studies have suggested a pathophysiological component that involves the central nervous system (CNS) and hormones such as leptin(More)
Leptin, a peptide hormone produced by adipose tissue, acts in brain centers that control critical physiological functions such as metabolism, breathing and cardiovascular regulation. The importance of leptin for respiratory control is evident by the fact that leptin deficient mice exhibit impaired ventilatory responses to carbon dioxide (CO2), which can be(More)
Intragastric hypertonic NaCl that simulates the ingestion of osmotically active substances by food intake induces thirst, vasopressin and oxytocin release, diuresis and natriuresis. Reactive oxygen species (ROS) produced endogenously in central areas may act modulating autonomic and behavioral responses. In the present study, we investigated the effects of(More)
Previously we have demonstrated that microinjection of acetylcholine (ACh) into the intermediate nucleus of the solitary tract (iNTS) induced sympatho-inhibition combined with a decrease in the phrenic nerve activity (PNA), whereas in the commissural NTS (cNTS), ACh did not change sympathetic nerve activity (SNA), but increased the PNA. In view of these(More)
UNLABELLED Melanocortin receptors (MC3/4R) mediate most of the metabolic and cardiovascular actions of leptin. AIM Here, we tested if MC4R also contributes to leptin's effects on respiratory function. METHODS After control measurements, male Holtzman rats received daily microinjections of leptin, SHU9119 (MC3/4R antagonist) or SHU9119 combined with(More)
  • 1