Werner Goldsmith

Learn More
Human cerebral blood vessels are frequently damaged in head impact, whether accidental or deliberate, resulting in intracranial bleeding. Additionally, the vasculature constitutes the support structure for the brain and, hence, plays a key role in the cranial load response. Quantification of its mechanical behavior, including limiting loads, is thus(More)
Cerebral blood vessels are frequently damaged in traumatic brain injury. Mechanical properties of fresh human cerebral vessels obtained through surgeries have been reported. Because surgical sources of human specimens are rare and produce a limited amount of material, we sought to compare the properties of more readily available cerebral arteries and veins(More)
The objective of this study was to understand the biomechanics in age-related primary traumatic brain injuries (TBI) causing initial severity and secondary progressive damage and to develop strategy reducing TBI outcome variability using biomechanical reconstruction to identify types of causal mechanisms prior to clinical trials of neuro-protective(More)
Brain tissue architecture consists of a complex network of neurons and vasculature interspersed within a matrix of supporting cells. The role of the relatively stiffer blood vessels on the more compliant brain tissues during rapid loading has not been properly investigated. Two 2-D finite element models of the human head were developed. The basic model(More)
A human head/neck/upper-torso replica was constructed and instrumented and its response to impact and dynamic loading was studied. The model consists of a water-filled cadaver skull; plastic vertebrae, sternum and ribs; silicon rubber disks and ligaments; and fabric muscles. The static behavior of the system under sagittal plane and lateral loading was(More)
There is significant disagreement among medical professionals regarding the mechanisms for infant brain injury. This disagreement is due in part to the failure by some to acknowledge and incorporate known biomechanical data and models into hypotheses regarding causes. A proper biomechanical understanding of the mechanisms of traumatic brain injury (TBI)(More)
A three-dimensional lumped-parameter model of the human head/neck/upper-torso was developed to predict its motion for any specified initial conditions and that could also be used to compare with the results of other investigators. This model consists of ten rigid bodies representing the head, cervical vertebrae C1-C7, T1 and T2 combined with the rest of the(More)
This presentation is the continuation of the article published in Critical Reviews of Biomedical Engineering, 29(5-6), 2001. That issue contained topics dealing with components and geometry of the human head, classification of head injuries, some early experimental studies, and tolerance considerations. It then dealt with head motion and load(More)