Werner Aufsatz

Learn More
RNA-directed DNA methylation, one of several RNA interference–mediated pathways in the nucleus, has been documented in plants and in human cells. Despite progress in identifying the DNA methyltransferases, histone-modifying enzymes and RNA interference proteins needed for RNA-directed DNA methylation, the mechanism remains incompletely understood. We(More)
Double-stranded RNA induces a post-transcriptional gene silencing process, termed RNAi, in diverse organisms. It is shown here that transcriptional gene silencing accompanied by de novo methylation of a target promoter in plants can be triggered by a double-stranded RNA containing promoter sequences. Similar to the double-stranded RNA involved in RNAi, this(More)
RNA interference is a conserved process in which double-stranded RNA is processed into 21-25 nucleotide siRNAs that trigger posttranscriptional gene silencing. In addition, plants display a phenomenon termed RNA-directed DNA methylation (RdDM) in which DNA with sequence identity to silenced RNA is de novo methylated at its cytosine residues. This(More)
In plants, the mechanism by which RNA can induce de novo cytosine methylation of homologous DNA is poorly understood. Cytosines in all sequence contexts become modified in response to RNA signals. Recent work has implicated the de novo DNA methyltransferases (DMTases), DRM1 and DRM2, in establishing RNA-directed methylation of the constitutive nopaline(More)
DRD1 is a SWI/SNF-like protein that cooperates with a plant-specific RNA polymerase, Pol IVb, to facilitate RNA-directed de novo methylation and silencing of homologous DNA. Screens to identify endogenous targets of this pathway in Arabidopsis revealed intergenic regions and plant genes located primarily in euchromatin. Many putative targets are near(More)
To analyze relationships between RNA signals, DNA methylation and chromatin modifications, we performed a genetic screen to recover Arabidopsis mutants defective in RNA-directed transcriptional silencing and methylation of a nopaline synthase promoter-neomycinphosphotransferase II (NOSpro- NPTII) target gene. Mutants were identified by screening for(More)
The Arabidopsis genome encodes four Dicer-like (DCL) proteins, two of which contain putative nuclear localization signals. This suggests one or more nuclear pathways for processing double-stranded (ds) RNA in plants. To study the subcellular location of processing of nuclear-encoded dsRNA involved in transcriptional silencing, we examined short interfering(More)
In plants, double-stranded RNA that is processed to short RNAs approximately 21-24 nt in length can trigger two types of epigenetic gene silencing. Posttranscriptional gene silencing, which is related to RNA interference in animals and quelling in fungi, involves targeted elimination of homologous mRNA in the cytoplasm. RNA-directed DNA methylation involves(More)
Chromosome termini form a specialized type of heterochromatin that is important for chromosome stability. The recent discovery of telomeric RNA transcripts in yeast and vertebrates raised the question of whether RNA-based mechanisms are involved in the formation of telomeric heterochromatin. In this study, we performed detailed analysis of chromatin(More)
DRD1 is a SNF2-like protein previously identified in a screen for mutants defective in RNA-directed DNA methylation of a seed promoter in Arabidopsis. Although the initial study established a role for DRD1 in RNA-directed DNA methylation, it did not address whether DRD1 is needed for de novo or maintenance methylation, or whether it is required for(More)